Design of a flight controller to achieve improved fault tolerance

Claudio D. Pose, Leonardo Garberoglio, Ezequiel Pecker-Marcosig, I. Mas, J. Giribet
{"title":"Design of a flight controller to achieve improved fault tolerance","authors":"Claudio D. Pose, Leonardo Garberoglio, Ezequiel Pecker-Marcosig, I. Mas, J. Giribet","doi":"10.37537/rev.elektron.6.2.162.2022","DOIUrl":null,"url":null,"abstract":"En los últimos años, los vehículos aéreos multirotores han ganado popularidad tanto en productos de consumo como en aplicaciones profesionales. La seguridad es una de las principales preocupaciones durante la operación y diferentes enfoques a la tolerancia a fallas se han propuesto y continúan desarrollándose. Para que un sistema de control maneje situaciones fuera de lo nominal, las fallas deben detectarse e identificarse adecuadamente, por lo tanto, se requiere un algoritmo de detección e identificación de fallas. Además, el lazo de control debe modificarse en consecuencia para hacer frente a cada falla de la mejor manera posible. Estos algoritmos generalmente se ejecutan en la computadora de vuelo de bajo nivel del vehículo, lo que le impone una gran carga computacional adicional. En este trabajo se utiliza un módulo de detección e identificación de fallas para evaluar su impacto en términos de tiempo de procesamiento adicional en una computadora de vuelo basada en el microcontrolador Cortex-M3. Si bien se puede ejecutar una versión altamente optimizada del algoritmo, aún sugiere posibles limitaciones de hardware para expandir las capacidades del sistema. La evaluación del mismo módulo en un diseño de computadora de vuelo mejorado basado en un microprocesador Cortex-M7 muestra una huella significativamente reducida en el rendimiento general, lo que permite agregar un método aumentado para una detección de fallas más rápida.","PeriodicalId":34872,"journal":{"name":"Elektron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37537/rev.elektron.6.2.162.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

En los últimos años, los vehículos aéreos multirotores han ganado popularidad tanto en productos de consumo como en aplicaciones profesionales. La seguridad es una de las principales preocupaciones durante la operación y diferentes enfoques a la tolerancia a fallas se han propuesto y continúan desarrollándose. Para que un sistema de control maneje situaciones fuera de lo nominal, las fallas deben detectarse e identificarse adecuadamente, por lo tanto, se requiere un algoritmo de detección e identificación de fallas. Además, el lazo de control debe modificarse en consecuencia para hacer frente a cada falla de la mejor manera posible. Estos algoritmos generalmente se ejecutan en la computadora de vuelo de bajo nivel del vehículo, lo que le impone una gran carga computacional adicional. En este trabajo se utiliza un módulo de detección e identificación de fallas para evaluar su impacto en términos de tiempo de procesamiento adicional en una computadora de vuelo basada en el microcontrolador Cortex-M3. Si bien se puede ejecutar una versión altamente optimizada del algoritmo, aún sugiere posibles limitaciones de hardware para expandir las capacidades del sistema. La evaluación del mismo módulo en un diseño de computadora de vuelo mejorado basado en un microprocesador Cortex-M7 muestra una huella significativamente reducida en el rendimiento general, lo que permite agregar un método aumentado para una detección de fallas más rápida.
设计了一种飞行控制器,以实现更高的容错性
近年来,多旋翼飞行器在消费产品和专业应用中越来越受欢迎。安全是操作过程中的主要关注点之一,不同的容错方法已经被提出并继续发展。为了控制系统处理超出标称的情况,必须对故障进行适当的检测和识别,因此需要一种故障检测和识别算法。此外,必须对控制回路进行相应的修改,以尽可能最好地处理每个故障。这些算法通常在飞行器的低级飞行计算机上运行,这给它带来了巨大的额外计算负载。在此背景下,本文提出了一种基于cortexm3微控制器的飞行计算机故障检测和识别模块,以评估其在额外处理时间方面的影响。虽然该算法的高度优化版本可以运行,但它仍然表明可能存在硬件限制,以扩展系统的能力。在基于Cortex-M7微处理器的改进飞行计算机设计中,对相同模块的评估显示,整体性能的足迹显著减少,允许添加一种增强的方法来更快地检测故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信