M. Norman, D. A. Bader, C. Eldred, W. Hannah, B. Hillman, C. R. Jones, Jungmin M. Lee, L. Leung, Isaac Lyngaas, K. Pressel, S. Sreepathi, M. Taylor, Xingqiu Yuan
{"title":"Unprecedented cloud resolution in a GPU-enabled full-physics atmospheric climate simulation on OLCF’s summit supercomputer","authors":"M. Norman, D. A. Bader, C. Eldred, W. Hannah, B. Hillman, C. R. Jones, Jungmin M. Lee, L. Leung, Isaac Lyngaas, K. Pressel, S. Sreepathi, M. Taylor, Xingqiu Yuan","doi":"10.1177/10943420211027539","DOIUrl":null,"url":null,"abstract":"Clouds represent a key uncertainty in future climate projection. While explicit cloud resolution remains beyond our computational grasp for global climate, we can incorporate important cloud effects through a computational middle ground called the Multi-scale Modeling Framework (MMF), also known as Super Parameterization. This algorithmic approach embeds high-resolution Cloud Resolving Models (CRMs) to represent moist convective processes within each grid column in a Global Climate Model (GCM). The MMF code requires no parallel data transfers and provides a self-contained target for acceleration. This study investigates the performance of the Energy Exascale Earth System Model-MMF (E3SM-MMF) code on the OLCF Summit supercomputer at an unprecedented scale of simulation. Hundreds of kernels in the roughly 10K lines of code in the E3SM-MMF CRM were ported to GPUs with OpenACC directives. A high-resolution benchmark using 4600 nodes on Summit demonstrates the computational capability of the GPU-enabled E3SM-MMF code in a full physics climate simulation.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"93 - 105"},"PeriodicalIF":3.5000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211027539","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 13
Abstract
Clouds represent a key uncertainty in future climate projection. While explicit cloud resolution remains beyond our computational grasp for global climate, we can incorporate important cloud effects through a computational middle ground called the Multi-scale Modeling Framework (MMF), also known as Super Parameterization. This algorithmic approach embeds high-resolution Cloud Resolving Models (CRMs) to represent moist convective processes within each grid column in a Global Climate Model (GCM). The MMF code requires no parallel data transfers and provides a self-contained target for acceleration. This study investigates the performance of the Energy Exascale Earth System Model-MMF (E3SM-MMF) code on the OLCF Summit supercomputer at an unprecedented scale of simulation. Hundreds of kernels in the roughly 10K lines of code in the E3SM-MMF CRM were ported to GPUs with OpenACC directives. A high-resolution benchmark using 4600 nodes on Summit demonstrates the computational capability of the GPU-enabled E3SM-MMF code in a full physics climate simulation.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.