{"title":"A goodness-of-fit test on the number of biclusters in a relational data matrix","authors":"Chihiro Watanabe, Taiji Suzuki","doi":"10.1007/s10463-023-00869-3","DOIUrl":null,"url":null,"abstract":"<div><p>Biclustering is a method for detecting homogeneous submatrices in a given matrix. Although there are many studies that estimate the underlying bicluster structure of a matrix, few have enabled us to determine the appropriate number of biclusters. Recently, a statistical test on the number of biclusters has been proposed for a regular-grid bicluster structure. However, when the latent bicluster structure does not satisfy such regular-grid assumption, the previous test requires a larger number of biclusters than necessary for the null hypothesis to be accepted, which is not desirable in terms of interpreting the accepted structure. In this study, we propose a new statistical test on the number of biclusters that does not require the regular-grid assumption and derive the asymptotic behavior of the proposed test statistic in both null and alternative cases. We illustrate the effectiveness of the proposed method by applying it to both synthetic and practical data matrices.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00869-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biclustering is a method for detecting homogeneous submatrices in a given matrix. Although there are many studies that estimate the underlying bicluster structure of a matrix, few have enabled us to determine the appropriate number of biclusters. Recently, a statistical test on the number of biclusters has been proposed for a regular-grid bicluster structure. However, when the latent bicluster structure does not satisfy such regular-grid assumption, the previous test requires a larger number of biclusters than necessary for the null hypothesis to be accepted, which is not desirable in terms of interpreting the accepted structure. In this study, we propose a new statistical test on the number of biclusters that does not require the regular-grid assumption and derive the asymptotic behavior of the proposed test statistic in both null and alternative cases. We illustrate the effectiveness of the proposed method by applying it to both synthetic and practical data matrices.