A goodness-of-fit test on the number of biclusters in a relational data matrix

Pub Date : 2023-04-17 DOI:10.1007/s10463-023-00869-3
Chihiro Watanabe, Taiji Suzuki
{"title":"A goodness-of-fit test on the number of biclusters in a relational data matrix","authors":"Chihiro Watanabe,&nbsp;Taiji Suzuki","doi":"10.1007/s10463-023-00869-3","DOIUrl":null,"url":null,"abstract":"<div><p>Biclustering is a method for detecting homogeneous submatrices in a given matrix. Although there are many studies that estimate the underlying bicluster structure of a matrix, few have enabled us to determine the appropriate number of biclusters. Recently, a statistical test on the number of biclusters has been proposed for a regular-grid bicluster structure. However, when the latent bicluster structure does not satisfy such regular-grid assumption, the previous test requires a larger number of biclusters than necessary for the null hypothesis to be accepted, which is not desirable in terms of interpreting the accepted structure. In this study, we propose a new statistical test on the number of biclusters that does not require the regular-grid assumption and derive the asymptotic behavior of the proposed test statistic in both null and alternative cases. We illustrate the effectiveness of the proposed method by applying it to both synthetic and practical data matrices.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00869-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biclustering is a method for detecting homogeneous submatrices in a given matrix. Although there are many studies that estimate the underlying bicluster structure of a matrix, few have enabled us to determine the appropriate number of biclusters. Recently, a statistical test on the number of biclusters has been proposed for a regular-grid bicluster structure. However, when the latent bicluster structure does not satisfy such regular-grid assumption, the previous test requires a larger number of biclusters than necessary for the null hypothesis to be accepted, which is not desirable in terms of interpreting the accepted structure. In this study, we propose a new statistical test on the number of biclusters that does not require the regular-grid assumption and derive the asymptotic behavior of the proposed test statistic in both null and alternative cases. We illustrate the effectiveness of the proposed method by applying it to both synthetic and practical data matrices.

Abstract Image

分享
查看原文
关系数据矩阵中双聚类数的拟合优度检验
双聚类是一种在给定矩阵中检测齐次矩阵的方法。虽然有许多研究估计了矩阵的潜在双簇结构,但很少有研究使我们能够确定适当的双簇数量。最近,对规则网格双聚类结构提出了一种双聚类数目的统计检验方法。然而,当潜在的双聚类结构不满足这种规则网格假设时,前面的检验需要比接受零假设所需的更多的双聚类,这在解释接受的结构方面是不可取的。在这项研究中,我们提出了一个新的双聚类数量的统计检验,它不需要正则网格假设,并推导了所提出的检验统计量在null和alternative情况下的渐近行为。我们通过将其应用于合成和实际数据矩阵来说明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信