{"title":"Families of graphs with twin pendent paths and the Braess edge","authors":"Sooyeon Kim","doi":"10.13001/ela.2022.5913","DOIUrl":null,"url":null,"abstract":"In the context of a random walk on an undirected graph, Kemeny's constant can measure the average travel time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in regard to Kemeny's constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths, regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny's constant. We provide several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of families of trees are described.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.5913","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
In the context of a random walk on an undirected graph, Kemeny's constant can measure the average travel time for a random walk between two randomly chosen vertices. We are interested in graphs that behave counter-intuitively in regard to Kemeny's constant: in particular, we examine graphs with a cut-vertex at which at least two branches are paths, regarding whether the insertion of a particular edge into a graph results in an increase of Kemeny's constant. We provide several tools for identifying such an edge in a family of graphs and for analysing asymptotic behaviour of the family regarding the tendency to have that edge; and classes of particular graphs are given as examples. Furthermore, asymptotic behaviours of families of trees are described.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.