Iteration of Composition Operators on small Bergman spaces of Dirichlet series

IF 0.3 Q4 MATHEMATICS
J. Zhao
{"title":"Iteration of Composition Operators on small Bergman spaces of Dirichlet series","authors":"J. Zhao","doi":"10.1515/conop-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract The Hilbert spaces ℋw consisiting of Dirichlet series F(s)=∑n=1∞ann-s $F(s) = \\sum\\nolimits_{n = 1}^\\infty {{a_n}{n^{ - s}}}$ that satisfty ∑n=1∞|an|2/wn<∞ ${\\sum\\nolimits_{n = 1}^\\infty {\\left| {{a_n}} \\right|} ^2}/{w_n} < \\infty $ with {wn}n of average order logj n (the j-fold logarithm of n), can be embedded into certain small Bergman spaces. Using this embedding, we study the Gordon–Hedenmalm theorem on such ℋw from an iterative point of view. By that theorem, the composition operators are generated by functions of the form Φ (s) = c0s +ϕ(s), where c0 is a nonnegative integer and ϕ is a Dirichlet series with certain convergence and mapping properties. The iterative phenomenon takes place when c0 = 0. It is verified for every integer j ⩾ 1, real α > 0 and {wn}n having average order (logj+n)α ${(\\log _j^ + n)^\\alpha }$ , that the composition operators map ℋw into a scale of ℋw’ with w’n having average order (logj+1+n)α ${(\\log _{j + 1}^ + n)^\\alpha }$ . The case j = 1 can be deduced from the proof of the main theorem of a recent paper of Bailleul and Brevig, and we adopt the same method to study the general iterative step.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"5 1","pages":"24 - 34"},"PeriodicalIF":0.3000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2018-0003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The Hilbert spaces ℋw consisiting of Dirichlet series F(s)=∑n=1∞ann-s $F(s) = \sum\nolimits_{n = 1}^\infty {{a_n}{n^{ - s}}}$ that satisfty ∑n=1∞|an|2/wn<∞ ${\sum\nolimits_{n = 1}^\infty {\left| {{a_n}} \right|} ^2}/{w_n} < \infty $ with {wn}n of average order logj n (the j-fold logarithm of n), can be embedded into certain small Bergman spaces. Using this embedding, we study the Gordon–Hedenmalm theorem on such ℋw from an iterative point of view. By that theorem, the composition operators are generated by functions of the form Φ (s) = c0s +ϕ(s), where c0 is a nonnegative integer and ϕ is a Dirichlet series with certain convergence and mapping properties. The iterative phenomenon takes place when c0 = 0. It is verified for every integer j ⩾ 1, real α > 0 and {wn}n having average order (logj+n)α ${(\log _j^ + n)^\alpha }$ , that the composition operators map ℋw into a scale of ℋw’ with w’n having average order (logj+1+n)α ${(\log _{j + 1}^ + n)^\alpha }$ . The case j = 1 can be deduced from the proof of the main theorem of a recent paper of Bailleul and Brevig, and we adopt the same method to study the general iterative step.
Dirichlet级数小Bergman空间上复合算子的迭代
摘要Hilbert空间ℋw关于Dirichlet级数F(s)=∑n=1∞ann-s$F(s{wn}n具有平均顺序(logj+n)α${(\log_j^+n)^\alpha}$,合成运算符映射ℋw的比例ℋ其中w'n具有平均阶(logj+1+n)α${(\log_{j+1}^+n)^\alpha}$。从Bailleul和Brevig最近的一篇论文的主要定理的证明中可以推导出j=1的情况,并且我们采用相同的方法来研究一般的迭代步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信