A Bayesian Analysis of the Spherical Distribution in Presence of Covariates

J. Achcar, Gian Franco Napa, Roberto Molina de Souza
{"title":"A Bayesian Analysis of the Spherical Distribution in Presence of Covariates","authors":"J. Achcar, Gian Franco Napa, Roberto Molina de Souza","doi":"10.6339/jds.201310_11(4).0008","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a Bayesian analysis of a spherical distribution applied to rock joint orientation data in presence or not of a vector of covariates, where the response variable is given by the angle from the mean and the covariates are the components of the normal upwards vector. Standard simulation MCMC (Markov Chain Monte Carlo) methods have been used to obtain the posterior summaries of interest obtained from WinBugs software. Illustration of the proposed methodology are given using a simulated data set and a real rock spherical data set from a hydroelectrical site.","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/jds.201310_11(4).0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce a Bayesian analysis of a spherical distribution applied to rock joint orientation data in presence or not of a vector of covariates, where the response variable is given by the angle from the mean and the covariates are the components of the normal upwards vector. Standard simulation MCMC (Markov Chain Monte Carlo) methods have been used to obtain the posterior summaries of interest obtained from WinBugs software. Illustration of the proposed methodology are given using a simulated data set and a real rock spherical data set from a hydroelectrical site.
存在协变量时球形分布的贝叶斯分析
在本文中,我们介绍了在存在或不存在协变量向量的情况下应用于岩石节理定向数据的球形分布的贝叶斯分析,其中响应变量由与平均值的角度给出,协变量是法向上向量的分量。已使用标准模拟MCMC(Markov Chain Monte Carlo)方法来获得从WinBugs软件获得的感兴趣的后验摘要。使用水电站的模拟数据集和真实岩石球形数据集对所提出的方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信