On the matrix Cauchy-Schwarz inequality

IF 0.6 4区 数学 Q3 MATHEMATICS
M. Sababheh, C. Conde, H. Moradi
{"title":"On the matrix Cauchy-Schwarz inequality","authors":"M. Sababheh, C. Conde, H. Moradi","doi":"10.7153/oam-2023-17-34","DOIUrl":null,"url":null,"abstract":"The main goal of this work is to present new matrix inequalities of the Cauchy-Schwarz type. In particular, we investigate the so-called Lieb functions, whose definition came as an umbrella of Cauchy-Schwarz-like inequalities, then we consider the mixed Cauchy-Schwarz inequality. This latter inequality has been influential in obtaining several other matrix inequalities, including numerical radius and norm results. Among many other results, we show that \\[\\left\\| T \\right\\|\\le \\frac{1}{4}\\left( \\left\\| \\left| T \\right|+\\left| {{T}^{*}} \\right|+2\\mathfrak RT \\right\\|+\\left\\| \\left| T \\right|+\\left| {{T}^{*}} \\right|-2\\mathfrak RT \\right\\| \\right),\\] where $\\mathfrak RT$ is the real part of $T$.","PeriodicalId":56274,"journal":{"name":"Operators and Matrices","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operators and Matrices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-34","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this work is to present new matrix inequalities of the Cauchy-Schwarz type. In particular, we investigate the so-called Lieb functions, whose definition came as an umbrella of Cauchy-Schwarz-like inequalities, then we consider the mixed Cauchy-Schwarz inequality. This latter inequality has been influential in obtaining several other matrix inequalities, including numerical radius and norm results. Among many other results, we show that \[\left\| T \right\|\le \frac{1}{4}\left( \left\| \left| T \right|+\left| {{T}^{*}} \right|+2\mathfrak RT \right\|+\left\| \left| T \right|+\left| {{T}^{*}} \right|-2\mathfrak RT \right\| \right),\] where $\mathfrak RT$ is the real part of $T$.
关于矩阵Cauchy-Schwarz不等式
这项工作的主要目标是提出新的Cauchy-Schwarz型矩阵不等式。特别地,我们研究了所谓的Lieb函数,它的定义是类Cauchy-Schwarz不等式的一个伞,然后我们考虑了混合Cauchy-施瓦兹不等式。后一个不等式对获得其他几个矩阵不等式产生了影响,包括数值半径和范数结果。在许多其他结果中,我们证明了\[\left\|T\right\|\le\frac{1}{4}\left(\left\|| \left|T\right |+\left|{{T}^{*}}\right |+2\mathfrak RT\right \|+\left \|| \left |T\right |+\right |{T}^{*}}\right |-2\mathfrakRT\right),\]其中$\mathfrak-RT$是$T$的实部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operators and Matrices
Operators and Matrices 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
43
审稿时长
7 months
期刊介绍: ''Operators and Matrices'' (''OaM'') aims towards developing a high standard international journal which will publish top quality research and expository papers in matrix and operator theory and their applications. The journal will publish mainly pure mathematics, but occasionally papers of a more applied nature could be accepted. ''OaM'' will also publish relevant book reviews. ''OaM'' is published quarterly, in March, June, September and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信