Rheological investigations of water-soluble polysaccharides extracted from Moroccan seaweed Cystoseira myriophylloides algae

Q2 Materials Science
S. Zaim, O. Cherkaoui, H. Rchid, R. Nmila, R. El moznine
{"title":"Rheological investigations of water-soluble polysaccharides extracted from Moroccan seaweed Cystoseira myriophylloides algae","authors":"S. Zaim, O. Cherkaoui, H. Rchid, R. Nmila, R. El moznine","doi":"10.1177/2041247920960956","DOIUrl":null,"url":null,"abstract":"The rheological properties and spectrum infrared of polysaccharides extracted from Cystoseira myriophylloides algae were investigated in the concentrations range from 3 to 9% (w/v) and at different temperatures. Results of rheological characteristics in a steady shear rate showed pseudoplastic properties and the dynamic rheological properties showed a fluid-like viscoelastic behavior. The flow and viscoelastic characteristics of polysaccharides were described using the power-law (the Ostwald model). The values of flow behavior index of the sample were close to unity (0.91) for 3% and it decreased up to 0.71 for 9% revealing the shear-thinning (pseudoplastic) nature of these polysaccharides. Moreover, the consistency coefficient increased non-linearly with concentration and it was described by a power law. The flow behavior as a function of temperature was satisfactorily described using the Arrhenius law and the activation energy values were extracted. It decreased from 15.68 and 17.21 kJ/mol when the concentration increased from 5 to 9% (w/v). Additionally, in dynamic rheological measurements, tan δ > 1 and G″ > G′ reveling a shear-thinning behavior. Finally, the analysis of the FTIR spectra of these polysaccharides showed the presence of uronic acid groups. This behavior would suggest that polysaccharides extracted from Cystoseira myriophylloides could be an interesting additive as thickeners.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247920960956","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247920960956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11

Abstract

The rheological properties and spectrum infrared of polysaccharides extracted from Cystoseira myriophylloides algae were investigated in the concentrations range from 3 to 9% (w/v) and at different temperatures. Results of rheological characteristics in a steady shear rate showed pseudoplastic properties and the dynamic rheological properties showed a fluid-like viscoelastic behavior. The flow and viscoelastic characteristics of polysaccharides were described using the power-law (the Ostwald model). The values of flow behavior index of the sample were close to unity (0.91) for 3% and it decreased up to 0.71 for 9% revealing the shear-thinning (pseudoplastic) nature of these polysaccharides. Moreover, the consistency coefficient increased non-linearly with concentration and it was described by a power law. The flow behavior as a function of temperature was satisfactorily described using the Arrhenius law and the activation energy values were extracted. It decreased from 15.68 and 17.21 kJ/mol when the concentration increased from 5 to 9% (w/v). Additionally, in dynamic rheological measurements, tan δ > 1 and G″ > G′ reveling a shear-thinning behavior. Finally, the analysis of the FTIR spectra of these polysaccharides showed the presence of uronic acid groups. This behavior would suggest that polysaccharides extracted from Cystoseira myriophylloides could be an interesting additive as thickeners.
摩洛哥紫菜中水溶性多糖的流变学研究
研究了从肉豆蔻藻中提取的多糖在3%至9%(w/v)的浓度范围内和不同温度下的流变特性和红外光谱。在稳定剪切速率下的流变特性结果显示出假塑性特性,动态流变特性显示出类似流体的粘弹性行为。使用幂律(奥斯特瓦尔德模型)描述了多糖的流动和粘弹性特性。样品的流动行为指数值在3%时接近1(0.91),在9%时下降到0.71,这表明了这些多糖的剪切变薄(假塑性)性质。此外,稠度系数随浓度呈非线性增加,并用幂律描述。使用阿伦尼斯定律令人满意地描述了作为温度函数的流动行为,并提取了活化能值。当浓度从5%增加到9%(w/v)时,其从15.68和17.21kJ/mol下降。此外,在动态流变测量中,tanδ>1和G〃>G′表现出剪切变薄行为。最后,对这些多糖的FTIR光谱的分析表明存在糖醛酸基团。这一行为表明,从肉豆蔻酸半胱氨酸中提取的多糖可能是一种有趣的增稠剂添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信