Models of curves over discrete valuation rings

IF 2.3 1区 数学 Q1 MATHEMATICS
T. Dokchitser
{"title":"Models of curves over discrete valuation rings","authors":"T. Dokchitser","doi":"10.1215/00127094-2020-0079","DOIUrl":null,"url":null,"abstract":"Let C be a smooth projective curve over a discretely valued field K, defined by an affine equation f(x,y)=0. We construct a model of C over the ring of integers of K using a toroidal embedding associated to the Newton polygon of f. We show that under “generic” conditions it is regular with normal crossings, and we determine when it is minimal, the global sections of its relative dualizing sheaf, and the tame part of the first etale cohomology of C.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0079","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Let C be a smooth projective curve over a discretely valued field K, defined by an affine equation f(x,y)=0. We construct a model of C over the ring of integers of K using a toroidal embedding associated to the Newton polygon of f. We show that under “generic” conditions it is regular with normal crossings, and we determine when it is minimal, the global sections of its relative dualizing sheaf, and the tame part of the first etale cohomology of C.
离散估值环上的曲线模型
设C是离散值域K上的光滑投影曲线,由仿射方程f(x,y)=0定义。我们使用与f的牛顿多边形相关的环形嵌入在K的整数环上构造了C的模型。我们证明了在“一般”条件下,它是具有法向交叉的正则的,并且我们确定了当它最小时,它的相对对偶鞘的全局截面,以及C的第一等同调的驯服部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信