Local Influence Analysis for Quasi-Likelihood Nonlinear Models with Random Effects

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tian Xia, Jiancheng Jiang, Xuejun Jiang
{"title":"Local Influence Analysis for Quasi-Likelihood Nonlinear Models with Random Effects","authors":"Tian Xia, Jiancheng Jiang, Xuejun Jiang","doi":"10.1155/2018/4878925","DOIUrl":null,"url":null,"abstract":"We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement, local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical examinations on a pharmacokinetics dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4878925","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4878925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement, local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical examinations on a pharmacokinetics dataset.
具有随机效应的拟似然非线性模型的局部影响分析
我们提出了一个具有随机效应的拟似然非线性模型,它是拟似然非线性建模和广义线性混合模型的混合扩展。它包括一大类现有模型作为示例。介绍了一种新的惩罚拟似然估计方法。基于拉普拉斯近似和惩罚的拟似然位移,研究了小扰动对所提出模型数据集的局部影响。在局部影响分析中考虑了四种具体的摄动方案。在药代动力学数据集上进行的一些数值检查表明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信