Seleksi Fitur dengan Artificial Bee Colony untuk Optimasi Klasifikasi Data Teh menggunakan Support Vector Machine

Suhaila Suhaila, Danang Lelono, Yunita Sari Sari
{"title":"Seleksi Fitur dengan Artificial Bee Colony untuk Optimasi Klasifikasi Data Teh menggunakan Support Vector Machine","authors":"Suhaila Suhaila, Danang Lelono, Yunita Sari Sari","doi":"10.22146/ijeis.63902","DOIUrl":null,"url":null,"abstract":"Tea quality can be recognized through the aroma it produces. Tea classification using e-nose generally only detects aroma using a general gas sensor. However, redundancy of sensor features can cause a decreasing in the system performance. Therefore we need a system that can select features so the classification performance becomes optimal. A software system of feature selection was built to optimize classification performance. Input data for the system is e-nose sensor response to 3 black tea qualities. The features are sensors on the e-nose instrument. Feature selection is implemented using wrapper approach, ABC algorithm is used for feature selection, then the selected features are evaluated by SVM classification. The results of the ABC-SVM system are then compared with the SVM only system. The results showed that from 12 e-nose sensors, sensors that most characterized black tea quality were TGS 2600, TGS 813, TGS 825, TGS 2602, TGS 2611, TGS 832, TGS 2612, TGS 2620 and TGS 822. Meanwhile, MQ-7, TGS 826 and TGS 2610 sensors are redundant in the system because the gas detected by the 3 sensors can be represented by other sensors. With the reduction in features to 9, the classification accuracy performance increased by 16.7%.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.63902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tea quality can be recognized through the aroma it produces. Tea classification using e-nose generally only detects aroma using a general gas sensor. However, redundancy of sensor features can cause a decreasing in the system performance. Therefore we need a system that can select features so the classification performance becomes optimal. A software system of feature selection was built to optimize classification performance. Input data for the system is e-nose sensor response to 3 black tea qualities. The features are sensors on the e-nose instrument. Feature selection is implemented using wrapper approach, ABC algorithm is used for feature selection, then the selected features are evaluated by SVM classification. The results of the ABC-SVM system are then compared with the SVM only system. The results showed that from 12 e-nose sensors, sensors that most characterized black tea quality were TGS 2600, TGS 813, TGS 825, TGS 2602, TGS 2611, TGS 832, TGS 2612, TGS 2620 and TGS 822. Meanwhile, MQ-7, TGS 826 and TGS 2610 sensors are redundant in the system because the gas detected by the 3 sensors can be represented by other sensors. With the reduction in features to 9, the classification accuracy performance increased by 16.7%.
茶的品质可以通过它所产生的香气来识别。使用电子鼻的茶分类通常只使用通用气体传感器检测香气。然而,传感器特征的冗余可能会导致系统性能下降。因此,我们需要一个能够选择特征的系统,以便分类性能达到最佳。为了优化分类性能,建立了一个特征选择软件系统。该系统的输入数据是电子鼻传感器对3种红茶品质的响应。这些功能是电子鼻仪器上的传感器。特征选择采用包装器方法,采用ABC算法进行特征选择,然后通过SVM分类对所选特征进行评价。然后将ABC-SVM系统的结果与仅SVM系统的结果进行比较。结果表明,在12个电子鼻传感器中,最能表征红茶品质的传感器是TGS 2600、TGS 813、TGS 825、TGS 2602、TGS 2611、TGS 832、TG斯2612、TGS 2620和TGS 822。同时,MQ-7、TGS 826和TGS 2610传感器在系统中是冗余的,因为这三个传感器检测到的气体可以由其他传感器表示。随着特征减少到9个,分类准确率性能提高了16.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信