{"title":"Reconstructed Elzaki Transform Method for Delay Differential Equations with Mamadu-Njoseh Polynomials","authors":"E. J. Mamadu, H. I. Ojarikre","doi":"10.17265/2159-5291/2019.02.001","DOIUrl":null,"url":null,"abstract":"One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transform method (ETM)) for computing delay differential equations (DDEs). Here, a reconstructed Elzaki transform method (RETM) is proposed for the solution of DDEs where Mamadu-Njoseh polynomials are applied as basis functions in the approximation of the analytic solution. Using this strategy, a numerical illustration as in Ref.[1] is provided to the RETM as a basis for comparison to guarantee accuracy and consistency of the method. All numerical computations were performed with MAPLE 18 software.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2019.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transform method (ETM)) for computing delay differential equations (DDEs). Here, a reconstructed Elzaki transform method (RETM) is proposed for the solution of DDEs where Mamadu-Njoseh polynomials are applied as basis functions in the approximation of the analytic solution. Using this strategy, a numerical illustration as in Ref.[1] is provided to the RETM as a basis for comparison to guarantee accuracy and consistency of the method. All numerical computations were performed with MAPLE 18 software.