Julia sets of random exponential maps

Pub Date : 2020-05-19 DOI:10.4064/FM959-10-2020
Krzysztof Lech
{"title":"Julia sets of random exponential maps","authors":"Krzysztof Lech","doi":"10.4064/FM959-10-2020","DOIUrl":null,"url":null,"abstract":"For a sequence $(\\lambda_n)$ of positive real numbers we consider the exponential functions $f_{\\lambda_n} (z) = \\lambda_n e^z$ and the compositions $F_n = f_{\\lambda_n} \\circ f_{\\lambda_{n-1}} \\circ ... \\circ f_{\\lambda_1}$. For such a non-autonomous family we can define the Fatou and Julia sets analogously to the usual case of autonomous iteration. The aim of this document is to study how the Julia set depends on the sequence $(\\lambda_n)$. Among other results, we prove the Julia set for a random sequence $\\{\\lambda_n \\}$, chosen uniformly from a neighbourhood of $\\frac{1}{e}$, is the whole plane with probability $1$. We also prove the Julia set for $\\frac{1}{e} + \\frac{1}{n^p}$ is the whole plane for $p < \\frac{1}{2}$, and give an example of a sequence $\\{\\lambda_n \\} $ for which the iterates of $0$ converge to infinity starting from any index, but the Fatou set is non-empty.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/FM959-10-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a sequence $(\lambda_n)$ of positive real numbers we consider the exponential functions $f_{\lambda_n} (z) = \lambda_n e^z$ and the compositions $F_n = f_{\lambda_n} \circ f_{\lambda_{n-1}} \circ ... \circ f_{\lambda_1}$. For such a non-autonomous family we can define the Fatou and Julia sets analogously to the usual case of autonomous iteration. The aim of this document is to study how the Julia set depends on the sequence $(\lambda_n)$. Among other results, we prove the Julia set for a random sequence $\{\lambda_n \}$, chosen uniformly from a neighbourhood of $\frac{1}{e}$, is the whole plane with probability $1$. We also prove the Julia set for $\frac{1}{e} + \frac{1}{n^p}$ is the whole plane for $p < \frac{1}{2}$, and give an example of a sequence $\{\lambda_n \} $ for which the iterates of $0$ converge to infinity starting from any index, but the Fatou set is non-empty.
分享
查看原文
Julia随机指数映射集
对于序列 $(\lambda_n)$ 对于正实数,我们考虑指数函数 $f_{\lambda_n} (z) = \lambda_n e^z$ 还有合成 $F_n = f_{\lambda_n} \circ f_{\lambda_{n-1}} \circ ... \circ f_{\lambda_1}$. 对于这样一个非自治族,我们可以类似于自治迭代的通常情况来定义Fatou和Julia集合。本文的目的是研究Julia集合如何依赖于序列 $(\lambda_n)$. 在其他结果中,我们证明了一个随机序列的Julia集 $\{\lambda_n \}$,均匀地从附近的 $\frac{1}{e}$是整个平面的概率 $1$. 我们也证明了茱莉亚集合 $\frac{1}{e} + \frac{1}{n^p}$ 整架飞机是用来买的吗 $p < \frac{1}{2}$,并给出一个序列的例子 $\{\lambda_n \} $ 的迭代 $0$ 从任意指标开始收敛到无穷远,但Fatou集合是非空的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信