{"title":"A hard durable transparent antifouling coating prepared by crosslinking ZrO2 and branched polysiloxane","authors":"Kaiqiang Zhang, Yong Zhu, Zhang Chen, Zongtao Zhang, Yanfeng Gao","doi":"10.1680/jsuin.22.01049","DOIUrl":null,"url":null,"abstract":"Antifouling coating faces some critical challenges towards applications, especially poor mechanical properties, complex or expensive fabrications and non-transparency. This work reports a transparent fluorine-free antifouling coating with robust mechanical property. Water, salt solution, alkali and acid solution can slide off the coating surface (water contact angle, CA>105°) and remove dirt. The coating endows remarkable protection of the substrate against exposure to harsh chemical conditions and mechanically robust against extensive abrasion and high hardness (6-9H). The characteristics of this coating is derived from heavily cross-linking branched 3-aminopropyltriethoxysilane with ZrO2 ceramic nanoparticles by a curing agent.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.22.01049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antifouling coating faces some critical challenges towards applications, especially poor mechanical properties, complex or expensive fabrications and non-transparency. This work reports a transparent fluorine-free antifouling coating with robust mechanical property. Water, salt solution, alkali and acid solution can slide off the coating surface (water contact angle, CA>105°) and remove dirt. The coating endows remarkable protection of the substrate against exposure to harsh chemical conditions and mechanically robust against extensive abrasion and high hardness (6-9H). The characteristics of this coating is derived from heavily cross-linking branched 3-aminopropyltriethoxysilane with ZrO2 ceramic nanoparticles by a curing agent.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.