RCTs against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects?

IF 3.1 3区 经济学 Q1 ECONOMICS
Brian C. Prest, Casey J. Wichman, K. Palmer
{"title":"RCTs against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects?","authors":"Brian C. Prest, Casey J. Wichman, K. Palmer","doi":"10.1086/724518","DOIUrl":null,"url":null,"abstract":"We investigate how successfully machine-learning (ML) prediction algorithms can be used to estimate causal treatment effects in electricity demand applications with nonexperimental data. We use three prediction algorithms—XGBoost, random forests, and LASSO—to generate counterfactuals using observational data. Using those counterfactuals, we estimate nonexperimental treatment effects and compare them to experimental treatment effects from a randomized experiment for electricity customers who faced critical-peak pricing and information treatments. Our results show that nonexperimental treatment effects based on each algorithm replicate the true treatment effects, even when only using data from treated households. Additionally, when using both treatment households and nonexperimental comparison households, standard two-way fixed effects regressions replicate the experimental benchmark, suggesting little benefit from ML approaches over standard program evaluation methods in that setting.","PeriodicalId":47114,"journal":{"name":"Journal of the Association of Environmental and Resource Economists","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Environmental and Resource Economists","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/724518","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate how successfully machine-learning (ML) prediction algorithms can be used to estimate causal treatment effects in electricity demand applications with nonexperimental data. We use three prediction algorithms—XGBoost, random forests, and LASSO—to generate counterfactuals using observational data. Using those counterfactuals, we estimate nonexperimental treatment effects and compare them to experimental treatment effects from a randomized experiment for electricity customers who faced critical-peak pricing and information treatments. Our results show that nonexperimental treatment effects based on each algorithm replicate the true treatment effects, even when only using data from treated households. Additionally, when using both treatment households and nonexperimental comparison households, standard two-way fixed effects regressions replicate the experimental benchmark, suggesting little benefit from ML approaches over standard program evaluation methods in that setting.
随机对照试验对抗机器:机器学习预测方法能否恢复实验治疗效果?
我们研究了如何利用非实验数据成功地使用机器学习(ML)预测算法来估计电力需求应用中的因果处理效应。我们使用三种预测算法——XGBoost、随机森林和LASSO——利用观测数据生成反事实。使用这些反事实,我们估计了非实验性治疗效果,并将其与一项针对面临关键峰值定价和信息治疗的电力客户的随机实验中的实验性治疗结果进行了比较。我们的结果表明,即使只使用接受治疗的家庭的数据,基于每种算法的非实验治疗效果也会复制真实的治疗效果。此外,当同时使用治疗家庭和非实验比较家庭时,标准的双向固定效应回归复制了实验基准,这表明在这种情况下,ML方法与标准项目评估方法相比几乎没有好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信