Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification

Q2 Computer Science
Nur Hasanah Ali, A. Abdullah, N. Saad, A. Muda
{"title":"Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification","authors":"Nur Hasanah Ali, A. Abdullah, N. Saad, A. Muda","doi":"10.11591/ijece.v13i5.pp5843-5852","DOIUrl":null,"url":null,"abstract":"Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5843-5852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation.
使用ResNet50进行侧支循环分类的脑锥束计算机断层扫描图像分析
中风患者的治疗可以在侧支循环功能的帮助下有效地进行。现在使用的侧支循环评分依赖于视觉检查,这可能导致评分者之间和评分者内部的差异。在这项研究中,使用ResNet50对缺血性中风患者的侧支循环分类进行了分析,方法是使用锥形束计算机断层扫描(CBCT)图像。深度学习分类的显著性能有助于神经放射科医生进行快速图像分类。应用预先训练的深度网络ResNet50来提取稳健特征,并学习CBCT图像在其卷积层中的结构。接下来,ResNet50的分类层被执行为“好”和“差”类的二进制分类。以80:20对图像进行分割以进行训练和测试。经验结果支持ResNet50的应用提供了一致的准确性、敏感性和特异性值的说法。分类准确率的性能值为76.79%。采用深度学习方法来揭示生物图像分析如何产生令人难以置信的可靠和可重复的结果。在CBCT图像上进行的实验证明,所提出的使用卷积神经网络(CNN)架构的ResNet50在分类侧支循环方面确实有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信