Characterization of wear and fatigue behavior of aluminum piston alloy using alumina nanoparticles

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Iqbal Alshalal, H. M. I. Al-Zuhairi, Auday Awad Abtan, M. Rasheed, Muna Khalil Asmail
{"title":"Characterization of wear and fatigue behavior of aluminum piston alloy using alumina nanoparticles","authors":"Iqbal Alshalal, H. M. I. Al-Zuhairi, Auday Awad Abtan, M. Rasheed, Muna Khalil Asmail","doi":"10.1515/jmbm-2022-0280","DOIUrl":null,"url":null,"abstract":"Abstract Due to their excellent thermal conductivity, lightweight, and ease of processing, aluminum alloys are the material of choice for piston manufacture in internal combustion engines. Nanoparticles (NPs) of alumina (Al2O3) with a size of 25 nm were incorporated into an aluminum piston alloy to examine the effect of the NP addition on wear resistance and fatigue behavior. The stir casting method has been utilized to manufacture experimental samples of the composite material by altering the particle weight ratio of aluminum to the matrix alloy to 2, 4, and 6 wt%. The surface morphology of the samples has been examined using an electronic scanning microscope. The results of the wear and fatigue tests indicate that the addition of Al2O3 to the composite enhanced its fatigue resistance and wear strength, with the exception of 6 wt% weight ratio. The best improvement in wear resistance and fatigue strength occurs at 4 wt% Al2O3 particles, which are 12.13 and 67.5%, respectively, more significant than the pure metal and other composites. The mechanical properties of the alloy samples have been enhanced by adding Al2O3 NPs of 25 nm size into the piston’s aluminum matrix alloy. Stir casting was employed to produce the needed composites by incorporating Al2O3 NPs at varied weight percentage ratios of 0, 2, 4, and 6 wt% into the master alloy. Before the composite alloy reached 6 wt%, including Al2O3 NPs, the alloy’s hardness and tensile strength improved, according to the experiment results.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Due to their excellent thermal conductivity, lightweight, and ease of processing, aluminum alloys are the material of choice for piston manufacture in internal combustion engines. Nanoparticles (NPs) of alumina (Al2O3) with a size of 25 nm were incorporated into an aluminum piston alloy to examine the effect of the NP addition on wear resistance and fatigue behavior. The stir casting method has been utilized to manufacture experimental samples of the composite material by altering the particle weight ratio of aluminum to the matrix alloy to 2, 4, and 6 wt%. The surface morphology of the samples has been examined using an electronic scanning microscope. The results of the wear and fatigue tests indicate that the addition of Al2O3 to the composite enhanced its fatigue resistance and wear strength, with the exception of 6 wt% weight ratio. The best improvement in wear resistance and fatigue strength occurs at 4 wt% Al2O3 particles, which are 12.13 and 67.5%, respectively, more significant than the pure metal and other composites. The mechanical properties of the alloy samples have been enhanced by adding Al2O3 NPs of 25 nm size into the piston’s aluminum matrix alloy. Stir casting was employed to produce the needed composites by incorporating Al2O3 NPs at varied weight percentage ratios of 0, 2, 4, and 6 wt% into the master alloy. Before the composite alloy reached 6 wt%, including Al2O3 NPs, the alloy’s hardness and tensile strength improved, according to the experiment results.
氧化铝纳米颗粒对铝活塞合金磨损和疲劳行为的表征
摘要铝合金由于其优异的导热性、重量轻、易于加工,是内燃机活塞制造的首选材料。尺寸为25的氧化铝(Al2O3)纳米粒子 nm掺入铝活塞合金中,以检验NP添加对耐磨性和疲劳行为的影响。通过将铝与基体合金的颗粒重量比改变为2、4和6,搅拌铸造方法已被用于制造复合材料的实验样品 重量%。使用电子扫描显微镜对样品的表面形态进行了检查。磨损和疲劳试验结果表明,Al2O3的加入提高了复合材料的抗疲劳性和耐磨强度,但6 wt%重量比。耐磨性和疲劳强度的最佳改善出现在4 Al2O3颗粒的重量百分比,分别为12.13%和67.5%,比纯金属和其他复合材料更显著。通过添加25 纳米尺寸的铝基合金。通过以0、2、4和6的不同重量百分比比掺入Al2O3 NP,采用搅拌铸造来生产所需的复合材料 wt%加入到中间合金中。在复合合金达到6 根据实验结果,wt%,包括Al2O3 NPs,合金的硬度和拉伸强度都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信