Predicting fire resistance of SRC columns through gene expression programming

IF 0.9 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
Meisam Hassani, M. Safi, R. R. Ardakani, A. S. Daryan
{"title":"Predicting fire resistance of SRC columns through gene expression programming","authors":"Meisam Hassani, M. Safi, R. R. Ardakani, A. S. Daryan","doi":"10.1108/JSFE-04-2020-0013","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to predict the fire resistance of steel-reinforced concrete columns by application of the genetic algorithm.\n\n\nDesign/methodology/approach\nIn total, 11 effective parameters are considered including mechanical and geometrical properties of columns and loading values as input parameters and the duration of concrete resistance at elevated temperatures as the output parameter. Then, experimental data of several studies – with extensive ranges – are collected and divided into two categories.\n\n\nFindings\nUsing the first set of the data along with the gene expression programming (GEP), the fire resistance predictive model of steel-reinforced concrete (SRC) composite columns is presented. By application of the second category, evaluation and validation of the proposed model are investigated as well, and the correspondent time-temperature diagrams are derived.\n\n\nOriginality/value\nThe relative error of 10% and the R coefficient of 0.9 for the predicted model are among the highlighted results of this validation. Based on the statistical errors, a fair agreement exists between the experimental data and predicted values, indicating the appropriate performance of the proposed GEP model for fire resistance prediction of SRC columns.\n","PeriodicalId":45033,"journal":{"name":"Journal of Structural Fire Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Fire Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/JSFE-04-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Purpose This paper aims to predict the fire resistance of steel-reinforced concrete columns by application of the genetic algorithm. Design/methodology/approach In total, 11 effective parameters are considered including mechanical and geometrical properties of columns and loading values as input parameters and the duration of concrete resistance at elevated temperatures as the output parameter. Then, experimental data of several studies – with extensive ranges – are collected and divided into two categories. Findings Using the first set of the data along with the gene expression programming (GEP), the fire resistance predictive model of steel-reinforced concrete (SRC) composite columns is presented. By application of the second category, evaluation and validation of the proposed model are investigated as well, and the correspondent time-temperature diagrams are derived. Originality/value The relative error of 10% and the R coefficient of 0.9 for the predicted model are among the highlighted results of this validation. Based on the statistical errors, a fair agreement exists between the experimental data and predicted values, indicating the appropriate performance of the proposed GEP model for fire resistance prediction of SRC columns.
用基因表达程序预测SRC柱的耐火性能
目的应用遗传算法对钢筋混凝土柱的耐火性能进行预测。设计/方法/方法总共考虑了11个有效参数,包括柱的力学和几何特性以及作为输入参数的荷载值,以及作为输出参数的高温下混凝土阻力的持续时间。然后,收集了几项范围广泛的研究的实验数据,并将其分为两类。利用第一组数据,结合基因表达程序(GEP),建立了钢-钢筋混凝土(SRC)组合柱的耐火预测模型。应用第二类方法,对所提模型进行了评价和验证,并推导了相应的时间-温度图。独创性/价值预测模型的相对误差为10%,R系数为0.9,是本次验证的突出结果之一。基于统计误差,实验数据与预测值之间存在较好的一致性,表明所提出的GEP模型在预测SRC柱耐火性能方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Fire Engineering
Journal of Structural Fire Engineering CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
2.20
自引率
10.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信