On Krylov’s estimates for optional semimartingales

IF 0.3 Q4 STATISTICS & PROBABILITY
M. Abdelghani, A. Melnikov, A. Pak
{"title":"On Krylov’s estimates for optional semimartingales","authors":"M. Abdelghani, A. Melnikov, A. Pak","doi":"10.1515/rose-2021-2059","DOIUrl":null,"url":null,"abstract":"Abstract The estimates of N. V. Krylov for distributions of stochastic integrals by means of the L d {L_{d}} -norm of a measurable function are well-known and are widely used in the theory of stochastic differential equations and controlled diffusion processes. We generalize estimates of this type for optional semimartingales, then apply these estimates to prove the change of variables formula for a general class of functions from the Sobolev space W d 2 {W^{2}_{d}} . We also show how to use these estimates for the investigation of L 2 {L^{2}} -convergence of solutions of optional SDE’s.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"29 1","pages":"161 - 171"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2021-2059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2021-2059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The estimates of N. V. Krylov for distributions of stochastic integrals by means of the L d {L_{d}} -norm of a measurable function are well-known and are widely used in the theory of stochastic differential equations and controlled diffusion processes. We generalize estimates of this type for optional semimartingales, then apply these estimates to prove the change of variables formula for a general class of functions from the Sobolev space W d 2 {W^{2}_{d}} . We also show how to use these estimates for the investigation of L 2 {L^{2}} -convergence of solutions of optional SDE’s.
关于可选半鞅的Krylov估计
摘要:对n。V。利用可测函数的L d {L_{d}}范数求解随机积分分布的Krylov方法是众所周知的,并广泛应用于随机微分方程理论和受控扩散过程。我们对可选半鞅推广了这类估计,然后应用这些估计证明了Sobolev空间W d 2 {W^{2}_{d}}中一类一般函数的变量变换公式。我们还展示了如何使用这些估计来研究可选SDE解的l2 {L^{2}}收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信