Development of accurate chemical thermodynamic database for geochemical storage of nuclear waste. Part III: Models for predicting solution properties and solid-liquid equilibrium in cesium binary and mixed systems

Q4 Environmental Science
BioRisk Pub Date : 2022-04-21 DOI:10.3897/biorisk.17.77523
Tsvetan Tsenov, Stanislav Donchev, C. Christov
{"title":"Development of accurate chemical thermodynamic database for geochemical storage of nuclear waste. Part III: Models for predicting solution properties and solid-liquid equilibrium in cesium binary and mixed systems","authors":"Tsvetan Tsenov, Stanislav Donchev, C. Christov","doi":"10.3897/biorisk.17.77523","DOIUrl":null,"url":null,"abstract":"The models described in this study are of high importance in the development of thermodynamic database needed for nuclear waste geochemical storage as well as for technology for extracting cesium resources from saline waters. In this study we developed new not concentration restricted thermodynamic models for solution behavior and solid-liquid equilibrium in CsF-H2O CsOH-H2O and Cs2SO4-H2O systems at 25 °C. To parameterize models we used all available experimental osmotic coefficients data for whole concentration range of solutions and up to saturation point. The new models are developed on the basis of Pitzer ion interactions approach. The predictions of new developed here models are in excellent agreement with experimental osmotic coefficients data (ϕ) in binary solutions from low to extremely high concentration (up to 21.8 mol.kg-1 for CsOH-H2O and up to 35.6 mol.kg-1 for CsF-H2O). The previously developed by Christov by Christov and co-authors and by other authors Pitzer approach based thermodynamic models for five (5) cesium binary systems (CsCl-H2O CsBr- H2O CsI-H2O CsNO3-H2O and Cs2SeO4- H2O) are tested by comparison with experimental osmotic coefficients data and with recommendations on activity coefficients (γ±) in binary solutions. The models which give the best agreement with (ϕ)- and (γ±) -data from low to high concentration up to m(sat) are accepted as correct models which can be used for solubility calculations in binary and mixed systems and determination of thermodynamic properties of precipitating cesium solid phases. The thermodynamic solubility products (ln Kosp) and the Deliquescence Relative Humidity (DRH) of solid phases precipitating from saturated cesium binary solutions (CsF(cr) CsCl(cr) CsBr(cr) CsI(cr) CsOH(cr) CsNO3(cr) Cs2SO4(cr) and Cs2SeO4(cr)) have been determined on the basis of evaluated and accepted binary parameters and using experimental solubility data. The reported mixing parameters [θ(Cs M2+) and ψ(Cs M2+ X)] evaluated by solubility approach for 15 cesium mixed ternary systems (CsCl-MgCl2-H2O CsBr-MgBr2-H2O CsCl-NiCl2-H2O CsBr-NiBr2-H2O CsCl-MnCl2-H2O CsCl-CoCl2-H2O CsCl-CuCl2-H2O CsCl-CsBr-H2O CsCl-RbCl-H2O Cs2SO4-CoSO4-H2O Cs2SeO4-CoSeO4-H2O Cs2SO4-NiSO4-H2O Cs2SeO4-NiSeO4-H2O Cs2SO4-ZnSO4-H2O and Cs2SeO4-ZnSeO4-H2O) are tabulated.","PeriodicalId":38674,"journal":{"name":"BioRisk","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioRisk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/biorisk.17.77523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

The models described in this study are of high importance in the development of thermodynamic database needed for nuclear waste geochemical storage as well as for technology for extracting cesium resources from saline waters. In this study we developed new not concentration restricted thermodynamic models for solution behavior and solid-liquid equilibrium in CsF-H2O CsOH-H2O and Cs2SO4-H2O systems at 25 °C. To parameterize models we used all available experimental osmotic coefficients data for whole concentration range of solutions and up to saturation point. The new models are developed on the basis of Pitzer ion interactions approach. The predictions of new developed here models are in excellent agreement with experimental osmotic coefficients data (ϕ) in binary solutions from low to extremely high concentration (up to 21.8 mol.kg-1 for CsOH-H2O and up to 35.6 mol.kg-1 for CsF-H2O). The previously developed by Christov by Christov and co-authors and by other authors Pitzer approach based thermodynamic models for five (5) cesium binary systems (CsCl-H2O CsBr- H2O CsI-H2O CsNO3-H2O and Cs2SeO4- H2O) are tested by comparison with experimental osmotic coefficients data and with recommendations on activity coefficients (γ±) in binary solutions. The models which give the best agreement with (ϕ)- and (γ±) -data from low to high concentration up to m(sat) are accepted as correct models which can be used for solubility calculations in binary and mixed systems and determination of thermodynamic properties of precipitating cesium solid phases. The thermodynamic solubility products (ln Kosp) and the Deliquescence Relative Humidity (DRH) of solid phases precipitating from saturated cesium binary solutions (CsF(cr) CsCl(cr) CsBr(cr) CsI(cr) CsOH(cr) CsNO3(cr) Cs2SO4(cr) and Cs2SeO4(cr)) have been determined on the basis of evaluated and accepted binary parameters and using experimental solubility data. The reported mixing parameters [θ(Cs M2+) and ψ(Cs M2+ X)] evaluated by solubility approach for 15 cesium mixed ternary systems (CsCl-MgCl2-H2O CsBr-MgBr2-H2O CsCl-NiCl2-H2O CsBr-NiBr2-H2O CsCl-MnCl2-H2O CsCl-CoCl2-H2O CsCl-CuCl2-H2O CsCl-CsBr-H2O CsCl-RbCl-H2O Cs2SO4-CoSO4-H2O Cs2SeO4-CoSeO4-H2O Cs2SO4-NiSO4-H2O Cs2SeO4-NiSeO4-H2O Cs2SO4-ZnSO4-H2O and Cs2SeO4-ZnSeO4-H2O) are tabulated.
开发用于核废料地球化学储存的精确化学热力学数据库。第三部分:预测铯二元和混合系统中溶液性质和固液平衡的模型
本研究中描述的模型对开发核废料地球化学储存所需的热力学数据库以及从盐水中提取铯资源的技术具有重要意义。在这项研究中,我们开发了新的非浓度限制热力学模型,用于25°C下CsF-H2O-CsOH-H2O和Cs2SO4-H2O系统中的溶液行为和固液平衡。为了参数化模型,我们使用了所有可用的溶液浓度范围和饱和点的实验渗透系数数据。新模型是在Pitzer离子相互作用方法的基础上发展起来的。新开发的模型的预测与从低浓度到极高浓度的二元溶液中的实验渗透系数数据(ξ)非常一致(CsOH-H2O高达21.8 mol.kg-1,CsF-H2O高达35.6 mol.kg-1)。Christov、Christov及其合著者和其他作者先前开发的五(5)个铯二元系统(CsCl-H2O-CsBr-H2O-CsI-H2O-CsNO3-H2O和Cs2SeO4-H2O)的基于Pitzer方法的热力学模型通过与实验渗透系数数据的比较和二元溶液中活度系数(γ±)的建议进行了测试。与从低浓度到高浓度直至m(sat)的(ξ)-和(γ±)-数据最为一致的模型被认为是正确的模型,可用于二元和混合系统中的溶解度计算以及沉淀铯固相的热力学性质的测定。基于评估和接受的二元参数并使用实验溶解度数据,测定了从饱和铯二元溶液(CsF(cr)CsCl(cr)Cs Br(cr)Cs I(cr)C sOH(cr)CsNO3(cr)Cs2SO4(cr)和Cs2SeO4(cr))中沉淀的固相的热力学溶解度积(ln Kosp)和潮解相对湿度(DRH)。表中列出了15个铯混合三元体系(CsCl-MgCl2-H2O-CsBr-MgBr2-H2OCsCl-NiCl2-H2O-CsBr-NiBr2-H2O CsCl-Cl-MnCl2-H2OCsCl-CoCl2-H2O CsCl-CuCl2-H2O CsCl-CsBr-CsBr-H2OCsCol-RbCl-H2OCs2SO4-CoSO4-H2O Cs2SeO4-NiSO4-H2OCs2Seo4-NiSeO4-H2O和Cs2SeO4-ZnSeO4-H2O)通过溶解度法评估的混合参数[θ(CsM2+)和ψ(CsM2+X)]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioRisk
BioRisk Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.40
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信