The complementary nabla Bennett-Leindler type inequalities

IF 0.7 Q2 MATHEMATICS
Z. Kayar, B. Kaymakçalan
{"title":"The complementary nabla Bennett-Leindler type inequalities","authors":"Z. Kayar, B. Kaymakçalan","doi":"10.31801/cfsuasmas.930138","DOIUrl":null,"url":null,"abstract":"We aim to find the complements of the Bennett-Leindler type inequalities in nabla time scale calculus by changing the exponent from $0<\\zeta< 1$ to $\\zeta>1.$ Different from the literature, the directions of the new inequalities, where $\\zeta>1,$ are the same as that of the previous nabla Bennett-Leindler type inequalities obtained for $0<\\zeta< 1$. By these settings, we not only complement existing nabla Bennett-Leindler type inequalities but also generalize them by involving more exponents. The dual results for the delta approach and the special cases for the discrete and continuous ones are obtained as well. Some of our results are novel even in the special cases.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.930138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We aim to find the complements of the Bennett-Leindler type inequalities in nabla time scale calculus by changing the exponent from $0<\zeta< 1$ to $\zeta>1.$ Different from the literature, the directions of the new inequalities, where $\zeta>1,$ are the same as that of the previous nabla Bennett-Leindler type inequalities obtained for $0<\zeta< 1$. By these settings, we not only complement existing nabla Bennett-Leindler type inequalities but also generalize them by involving more exponents. The dual results for the delta approach and the special cases for the discrete and continuous ones are obtained as well. Some of our results are novel even in the special cases.
互补的nabla Bennett-Leindler型不等式
我们的目的是通过将指数从$01.$改变来寻找nabla时标演算中Bennett-Leindler型不等式的补数。与文献不同的是,新不等式的方向,其中$\zeta>1,$与以前在$0<\zeta<1$下获得的nabla-Bennt-Leindle型不等式的方向相同。通过这些设置,我们不仅补充了现有的nabla-Bennt-Leindler型不等式,而且通过引入更多的指数来推广它们。得到了delta方法的对偶结果以及离散和连续方法的特殊情况。即使在特殊情况下,我们的一些结果也是新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信