{"title":"Pólya–Carlson Dichotomy for Dynamical Zeta Functions and a Twisted Burnside–Frobenius Theorem","authors":"A. Fel’shtyn, E. Troitsky","doi":"10.1134/S1061920821040051","DOIUrl":null,"url":null,"abstract":"<p> For the unitary dual mapping of an automorphism of a torsion-free, finite rank nilpotent group, we prove the Pólya–Carlson dichotomy between rationality and the natural boundary for the analytic behavior of its Artin–Mazur dynamical zeta function. We also establish Gauss congruences for the Reidemeister numbers of the iterations of endomorphisms of groups in this class. Our method is the twisted Burnside–Frobenius theorem proven in the paper for automorphisms of this class of groups, and a calculation of the Reidemeister numbers via a product formula and profinite completions. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"28 4","pages":"455 - 463"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920821040051","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6
Abstract
For the unitary dual mapping of an automorphism of a torsion-free, finite rank nilpotent group, we prove the Pólya–Carlson dichotomy between rationality and the natural boundary for the analytic behavior of its Artin–Mazur dynamical zeta function. We also establish Gauss congruences for the Reidemeister numbers of the iterations of endomorphisms of groups in this class. Our method is the twisted Burnside–Frobenius theorem proven in the paper for automorphisms of this class of groups, and a calculation of the Reidemeister numbers via a product formula and profinite completions.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.