Gauss–Kronecker curvature and equisingularity at infinity of definable families

IF 0.5 4区 数学 Q3 MATHEMATICS
N. Dutertre, V. Grandjean
{"title":"Gauss–Kronecker curvature and equisingularity at infinity of definable families","authors":"N. Dutertre, V. Grandjean","doi":"10.4310/ajm.2021.v25.n6.a2","DOIUrl":null,"url":null,"abstract":"Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let $(T_s)_{s\\in \\mathbb{R}}$ be a globally definable one parameter family of $C^2$-hypersurfaces of $\\mathbb{R}^n$. Upon defining the notion of generalized critical value for such a family we show that the functions $s \\to |K(s)|$ and $s\\to K(s)$, respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of $T_s$, are continuous in any neighbourhood of any value which is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the levels of a real polynomial.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n6.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let $(T_s)_{s\in \mathbb{R}}$ be a globally definable one parameter family of $C^2$-hypersurfaces of $\mathbb{R}^n$. Upon defining the notion of generalized critical value for such a family we show that the functions $s \to |K(s)|$ and $s\to K(s)$, respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of $T_s$, are continuous in any neighbourhood of any value which is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the levels of a real polynomial.
可定义族无穷远处的Gauss–Kronecker曲率和等奇异性
假设给定一个展开实数的多项式有界0 -极小结构。设$(T_s)_{s\in \mathbb{R}}$是$C^2$- $\mathbb{R}^n$的超曲面的一个全局可定义的单参数族。在定义这种族的广义临界值的概念后,我们证明了函数$s\到|K(s)|$和$s\到K(s)$,分别是$T_s$的总绝对高斯-克罗内克曲率和总高斯-克罗内克曲率,在任何非广义临界值的邻域中是连续的。特别地,这为实多项式的阶族提供了一个必要的等奇性判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信