{"title":"Gauss–Kronecker curvature and equisingularity at infinity of definable families","authors":"N. Dutertre, V. Grandjean","doi":"10.4310/ajm.2021.v25.n6.a2","DOIUrl":null,"url":null,"abstract":"Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let $(T_s)_{s\\in \\mathbb{R}}$ be a globally definable one parameter family of $C^2$-hypersurfaces of $\\mathbb{R}^n$. Upon defining the notion of generalized critical value for such a family we show that the functions $s \\to |K(s)|$ and $s\\to K(s)$, respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of $T_s$, are continuous in any neighbourhood of any value which is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the levels of a real polynomial.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n6.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Assume given a polynomially bounded o-minimal structure expanding the real numbers. Let $(T_s)_{s\in \mathbb{R}}$ be a globally definable one parameter family of $C^2$-hypersurfaces of $\mathbb{R}^n$. Upon defining the notion of generalized critical value for such a family we show that the functions $s \to |K(s)|$ and $s\to K(s)$, respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of $T_s$, are continuous in any neighbourhood of any value which is not generalized critical. In particular this provides a necessary criterion of equisingularity for the family of the levels of a real polynomial.