Enhancement in the Friction and Wear Resistance of Low Carbon Chromium Steel and Load Carrying Capability of MIL-PRF-23699 Grade Lubricant Using h-BN Nanoadditives for Aerospace Applications

IF 2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
S. M., Elayaperumal A., Sankaraiah M., S. H
{"title":"Enhancement in the Friction and Wear Resistance of Low Carbon Chromium Steel and Load Carrying Capability of MIL-PRF-23699 Grade Lubricant Using h-BN Nanoadditives for Aerospace Applications","authors":"S. M., Elayaperumal A., Sankaraiah M., S. H","doi":"10.1080/10402004.2023.2242420","DOIUrl":null,"url":null,"abstract":"Abstract The frictional coefficient of LCCS with MIL-PRF-23699 grade lubricant was high, which led to an increase in heat generation and temperature rise of the lubricant in aircraft parts such as the accessory gearbox and engine gearbox. To overcome this, the present study proposed the use of h-BN nanoparticles as an additive with MIL-PRF-23699 grade lubricant. To improve the stability and suspension of the h-BN nanoparticles in the NL, the NL was prepared with h-BN nanoparticles and various surfactants. The properties were evaluated for both BL and NL. The tribological experiments were carried out using a four-ball tester, a shear stability tester, and a Reichert tester. The h-BN NL resulted in a 16% reduction in WSD when compared with the BL. The LWI of h-BN NL was increased by 7.44% compared with BL. In the shear stability test, h-BN NL showed 93% better shear stability than the BL. The CoF was reduced by 13% with the h-BN NL in the Reichert test. The experimental results indicated that the h-BN nanoparticles with MIL-PRF-23699 grade lubricant had better tribological properties for aerospace applications.","PeriodicalId":23315,"journal":{"name":"Tribology Transactions","volume":"66 1","pages":"882 - 894"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Transactions","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10402004.2023.2242420","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The frictional coefficient of LCCS with MIL-PRF-23699 grade lubricant was high, which led to an increase in heat generation and temperature rise of the lubricant in aircraft parts such as the accessory gearbox and engine gearbox. To overcome this, the present study proposed the use of h-BN nanoparticles as an additive with MIL-PRF-23699 grade lubricant. To improve the stability and suspension of the h-BN nanoparticles in the NL, the NL was prepared with h-BN nanoparticles and various surfactants. The properties were evaluated for both BL and NL. The tribological experiments were carried out using a four-ball tester, a shear stability tester, and a Reichert tester. The h-BN NL resulted in a 16% reduction in WSD when compared with the BL. The LWI of h-BN NL was increased by 7.44% compared with BL. In the shear stability test, h-BN NL showed 93% better shear stability than the BL. The CoF was reduced by 13% with the h-BN NL in the Reichert test. The experimental results indicated that the h-BN nanoparticles with MIL-PRF-23699 grade lubricant had better tribological properties for aerospace applications.
航空航天用h-BN纳米添加剂提高低碳铬钢的摩擦磨损性能和MIL-PRF-23699级润滑油的承载能力
使用MIL-PRF-23699级润滑油的LCCS摩擦系数高,导致飞机副齿轮箱、发动机齿轮箱等部件的润滑油发热量增加,温升升高。为了克服这一问题,本研究提出使用h-BN纳米颗粒作为MIL-PRF-23699级润滑剂的添加剂。为了提高氢氮化硼纳米颗粒在NL中的稳定性和悬浮性,将氢氮化硼纳米颗粒与各种表面活性剂混合制备了NL。对BL和NL进行了性能评价。摩擦学实验采用四球试验机、剪切稳定性试验机和Reichert试验机进行。h-BN NL的WSD比BL降低了16%,LWI比BL提高了7.44%,剪切稳定性试验结果表明,h-BN NL的剪切稳定性比BL提高了93%,CoF比BL降低了13%。实验结果表明,含有MIL-PRF-23699级润滑剂的h-BN纳米颗粒具有更好的摩擦学性能,适用于航空航天应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Transactions
Tribology Transactions 工程技术-工程:机械
CiteScore
3.90
自引率
4.80%
发文量
82
审稿时长
4 months
期刊介绍: Tribology Transactions contains experimental and theoretical papers on friction, wear, lubricants, lubrication, materials, machines and moving components, from the macro- to the nano-scale. The papers will be of interest to academic, industrial and government researchers and technologists working in many fields, including: Aerospace, Agriculture & Forest, Appliances, Automotive, Bearings, Biomedical Devices, Condition Monitoring, Engines, Gears, Industrial Engineering, Lubricants, Lubricant Additives, Magnetic Data Storage, Manufacturing, Marine, Materials, MEMs and NEMs, Mining, Power Generation, Metalworking Fluids, Seals, Surface Engineering and Testing and Analysis. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief and, if found suitable for further consideration, are submitted for peer review by independent, anonymous expert referees. All peer review in single blind and submission is online via ScholarOne Manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信