{"title":"Calabi type functionals for coupled Kähler–Einstein metrics","authors":"Satoshi Nakamura","doi":"10.1007/s10455-023-09913-0","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the coupled Ricci–Calabi functional and the coupled H-functional which measure how far a Kähler metric is from a coupled Kähler–Einstein metric in the sense of Hultgren–Witt Nyström. We first give corresponding moment weight type inequalities which estimate each functional in terms of algebraic invariants. Secondly, we give corresponding Hessian formulas for these functionals at each critical point, which have an application to a Matsushima type obstruction theorem for the existence of a coupled Kähler–Einstein metric.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"64 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09913-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09913-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the coupled Ricci–Calabi functional and the coupled H-functional which measure how far a Kähler metric is from a coupled Kähler–Einstein metric in the sense of Hultgren–Witt Nyström. We first give corresponding moment weight type inequalities which estimate each functional in terms of algebraic invariants. Secondly, we give corresponding Hessian formulas for these functionals at each critical point, which have an application to a Matsushima type obstruction theorem for the existence of a coupled Kähler–Einstein metric.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.