{"title":"Parameterized Complexity of Logic-based Argumentation in Schaefer’s Framework","authors":"Yasir Mahmood, A. Meier, Johannes Schmidt","doi":"10.1145/3582499","DOIUrl":null,"url":null,"abstract":"Argumentation is a well-established formalism dealing with conflicting information by generating and comparing arguments. It has been playing a major role in AI for decades. In logic-based argumentation, we explore the internal structure of an argument. Informally, a set of formulas is the support for a given claim if it is consistent, subset-minimal, and implies the claim. In such a case, the pair of the support and the claim together is called an argument. In this article, we study the propositional variants of the following three computational tasks studied in argumentation: ARG (exists a support for a given claim with respect to a given set of formulas), ARG-Check (is a given set a support for a given claim), and ARG-Rel (similarly as ARG plus requiring an additionally given formula to be contained in the support). ARG-Check is complete for the complexity class DP, and the other two problems are known to be complete for the second level of the polynomial hierarchy (Creignou et al. 2014 and Parson et al., 2003) and, accordingly, are highly intractable. Analyzing the reason for this intractability, we perform a two-dimensional classification: First, we consider all possible propositional fragments of the problem within Schaefer’s framework (STOC 1978) and then study different parameterizations for each of the fragments. We identify a list of reasonable structural parameters (size of the claim, support, knowledge base) that are connected to the aforementioned decision problems. Eventually, we thoroughly draw a fine border of parameterized intractability for each of the problems showing where the problems are fixed-parameter tractable and when this exactly stops. Surprisingly, several cases are of very high intractability (para-NP and beyond).","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"24 1","pages":"1 - 25"},"PeriodicalIF":0.7000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3582499","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Argumentation is a well-established formalism dealing with conflicting information by generating and comparing arguments. It has been playing a major role in AI for decades. In logic-based argumentation, we explore the internal structure of an argument. Informally, a set of formulas is the support for a given claim if it is consistent, subset-minimal, and implies the claim. In such a case, the pair of the support and the claim together is called an argument. In this article, we study the propositional variants of the following three computational tasks studied in argumentation: ARG (exists a support for a given claim with respect to a given set of formulas), ARG-Check (is a given set a support for a given claim), and ARG-Rel (similarly as ARG plus requiring an additionally given formula to be contained in the support). ARG-Check is complete for the complexity class DP, and the other two problems are known to be complete for the second level of the polynomial hierarchy (Creignou et al. 2014 and Parson et al., 2003) and, accordingly, are highly intractable. Analyzing the reason for this intractability, we perform a two-dimensional classification: First, we consider all possible propositional fragments of the problem within Schaefer’s framework (STOC 1978) and then study different parameterizations for each of the fragments. We identify a list of reasonable structural parameters (size of the claim, support, knowledge base) that are connected to the aforementioned decision problems. Eventually, we thoroughly draw a fine border of parameterized intractability for each of the problems showing where the problems are fixed-parameter tractable and when this exactly stops. Surprisingly, several cases are of very high intractability (para-NP and beyond).
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.