Machine learning for learner English

IF 1.1 0 LANGUAGE & LINGUISTICS
Nicolas Ballier, S. Canu, C. Petitjean, G. Gasso, C. Balhana, T. Alexopoulou, Thomas Gaillat
{"title":"Machine learning for learner English","authors":"Nicolas Ballier, S. Canu, C. Petitjean, G. Gasso, C. Balhana, T. Alexopoulou, Thomas Gaillat","doi":"10.1075/ijlcr.18012.bal","DOIUrl":null,"url":null,"abstract":"\n This paper discusses machine learning techniques for the prediction of Common European Framework of Reference (CEFR)\n levels in a learner corpus. We summarise the CAp 2018 Machine Learning (ML) competition, a\n classification task of the six CEFR levels, which map linguistic competence in a foreign language onto six reference levels. The goal of\n this competition was to produce a machine learning system to predict learners’ competence levels from written productions comprising between\n 20 and 300 words and a set of characteristics computed for each text extracted from the French component of the EFCAMDAT data (Geertzen et al., 2013). Together with the description of the competition, we provide an analysis of\n the results and methods proposed by the participants and discuss the benefits of this kind of competition for the learner corpus research\n (LCR) community. The main findings address the methods used and lexical bias introduced by the task.","PeriodicalId":29715,"journal":{"name":"International Journal of Learner Corpus Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Learner Corpus Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/ijlcr.18012.bal","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 8

Abstract

This paper discusses machine learning techniques for the prediction of Common European Framework of Reference (CEFR) levels in a learner corpus. We summarise the CAp 2018 Machine Learning (ML) competition, a classification task of the six CEFR levels, which map linguistic competence in a foreign language onto six reference levels. The goal of this competition was to produce a machine learning system to predict learners’ competence levels from written productions comprising between 20 and 300 words and a set of characteristics computed for each text extracted from the French component of the EFCAMDAT data (Geertzen et al., 2013). Together with the description of the competition, we provide an analysis of the results and methods proposed by the participants and discuss the benefits of this kind of competition for the learner corpus research (LCR) community. The main findings address the methods used and lexical bias introduced by the task.
学习英语的机器学习
本文讨论了在学习者语料库中预测欧洲通用参考框架(CEFR)水平的机器学习技术。我们总结了CAp 2018机器学习(ML)竞赛,这是一项由六个CEFR级别组成的分类任务,将外语的语言能力映射到六个参考级别上。本次比赛的目标是开发一个机器学习系统,根据书面作品预测学习者的能力水平,该书面作品包括20至300个单词,以及从EFCAMDAT数据的法语部分提取的每一篇文本计算的一组特征(Geertzen等人,2013)。在描述比赛的同时,我们对参与者提出的结果和方法进行了分析,并讨论了这种比赛对学习者语料库研究(LCR)社区的好处。主要研究结果涉及任务所使用的方法和引入的词汇偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信