Berezin number inequalities for operators

IF 0.3 Q4 MATHEMATICS
M. Bakherad, M. Garayev
{"title":"Berezin number inequalities for operators","authors":"M. Bakherad, M. Garayev","doi":"10.1515/conop-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract The Berezin transform à of an operator A, acting on the reproducing kernel Hilbert space ℋ = ℋ (Ω) over some (non-empty) set Ω, is defined by Ã(λ) = 〉Aǩ λ, ǩ λ〈 (λ ∈ Ω), where k⌢λ=kλ‖ kλ ‖ ${\\mathord{\\buildrel{\\lower3pt\\hbox{$\\scriptscriptstyle\\frown$}}\\over k} _\\lambda } = {{{k_\\lambda }} \\over {\\left\\| {{k_\\lambda }} \\right\\|}}$ is the normalized reproducing kernel of ℋ. The Berezin number of an operator A is defined by ber(A)=supλ∈Ω| A˜(λ) |=supλ∈Ω| 〈 Ak⌢λ,k⌢λ 〉 | ${\\bf{ber}}{\\rm{(}}A) = \\mathop {\\sup }\\limits_{\\lambda \\in \\Omega } \\left| {\\tilde A(\\lambda )} \\right| = \\mathop {\\sup }\\limits_{\\lambda \\in \\Omega } \\left| {\\left\\langle {A{{\\mathord{\\buildrel{\\lower3pt\\hbox{$\\scriptscriptstyle\\frown$}}\\over k} }_\\lambda },{{\\mathord{\\buildrel{\\lower3pt\\hbox{$\\scriptscriptstyle\\frown$}}\\over k} }_\\lambda }} \\right\\rangle } \\right|$ . In this paper, we prove some Berezin number inequalities. Among other inequalities, it is shown that if A, B, X are bounded linear operators on a Hilbert space ℋ, then ber(AX±XA)⩽ber12(A*A+AA*)ber12(X*X+XX*) $${\\bf{ber}}(AX \\pm XA) \\leqslant {\\bf{be}}{{\\bf{r}}^{{1 \\over 2}}}\\left( {A*A + AA*} \\right){\\bf{be}}{{\\bf{r}}^{{1 \\over 2}}}\\left( {X*X + XX*} \\right)$$ and ber2(A*XB)⩽‖ X ‖2ber(A*A)ber(B*B). $${\\bf{be}}{{\\bf{r}}^2}({A^*}XB) \\leqslant {\\left\\| X \\right\\|^2}{\\bf{ber}}({A^*}A){\\bf{ber}}({B^*}B).$$ We also prove the multiplicative inequality ber(AB)⩽ber(A)ber(B) $${\\bf{ber}}(AB){\\bf{ber}}(A){\\bf{ber}}(B)$$","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2019-0003","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 38

Abstract

Abstract The Berezin transform à of an operator A, acting on the reproducing kernel Hilbert space ℋ = ℋ (Ω) over some (non-empty) set Ω, is defined by Ã(λ) = 〉Aǩ λ, ǩ λ〈 (λ ∈ Ω), where k⌢λ=kλ‖ kλ ‖ ${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} _\lambda } = {{{k_\lambda }} \over {\left\| {{k_\lambda }} \right\|}}$ is the normalized reproducing kernel of ℋ. The Berezin number of an operator A is defined by ber(A)=supλ∈Ω| A˜(λ) |=supλ∈Ω| 〈 Ak⌢λ,k⌢λ 〉 | ${\bf{ber}}{\rm{(}}A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda },{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda }} \right\rangle } \right|$ . In this paper, we prove some Berezin number inequalities. Among other inequalities, it is shown that if A, B, X are bounded linear operators on a Hilbert space ℋ, then ber(AX±XA)⩽ber12(A*A+AA*)ber12(X*X+XX*) $${\bf{ber}}(AX \pm XA) \leqslant {\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {A*A + AA*} \right){\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {X*X + XX*} \right)$$ and ber2(A*XB)⩽‖ X ‖2ber(A*A)ber(B*B). $${\bf{be}}{{\bf{r}}^2}({A^*}XB) \leqslant {\left\| X \right\|^2}{\bf{ber}}({A^*}A){\bf{ber}}({B^*}B).$$ We also prove the multiplicative inequality ber(AB)⩽ber(A)ber(B) $${\bf{ber}}(AB){\bf{ber}}(A){\bf{ber}}(B)$$
算子的Berezin数不等式
算子A的Berezin变换Ã作用于某个(非空)集Ω上的再现核希尔伯特空间h = h (Ω),定义为Ã(λ) = > a λ, λ < (λ∈Ω),其中kλ =kλ‖kλ‖ ${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} _\lambda } = {{{k_\lambda }} \over {\left\| {{k_\lambda }} \right\|}}$ 是h的归一化再现核。算子A的Berezin数定义为ber(A)=supλ∈Ω| A ~ (λ) |=supλ∈Ω| < Ak λ,k λ > | ${\bf{ber}}{\rm{(}}A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda },{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over k} }_\lambda }} \right\rangle } \right|$ 。本文证明了一些Berezin数不等式。在其他不等式中,证明了如果A, B, X是Hilbert空间h上的有界线性算子,则ber(AX±XA)≤ber12(A*A+AA*)ber12(X*X+XX*) $${\bf{ber}}(AX \pm XA) \leqslant {\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {A*A + AA*} \right){\bf{be}}{{\bf{r}}^{{1 \over 2}}}\left( {X*X + XX*} \right)$$ ber2(A*XB)≥‖X‖2ber(A*A)ber(B*B)。 $${\bf{be}}{{\bf{r}}^2}({A^*}XB) \leqslant {\left\| X \right\|^2}{\bf{ber}}({A^*}A){\bf{ber}}({B^*}B).$$ 我们还证明了乘法不等式ber(AB)≤ber(A)ber(B) $${\bf{ber}}(AB){\bf{ber}}(A){\bf{ber}}(B)$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信