Thermal evolution and stability analysis of phenomenologically emergent dark energy model

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Rosemin John, N. Sarath, Titus K. Mathew
{"title":"Thermal evolution and stability analysis of phenomenologically emergent dark energy model","authors":"Rosemin John,&nbsp;N. Sarath,&nbsp;Titus K. Mathew","doi":"10.1140/epjc/s10052-023-11840-0","DOIUrl":null,"url":null,"abstract":"<div><p>The phenomenologically emergent dark energy (PEDE) model is a varying dark energy model with no extra degrees of freedom proposed by Li and Shafieloo (Astrophys J 883(1):L3, 2019) to alleviate the Hubble tension. The statistical consistency of the model has been discussed by many authors. Since the model depicts a phantom dark energy that increases with redshift, its cosmic evolution, particularly during the late phase, must be examined. We discover that the model’s Hubble and deceleration parameters display unusual behaviour in the future, which differs from <span>\\(\\varLambda \\)</span>CDM cosmology. We find the model also follows a distinct evolution in the statefinder plane. The phantom nature of the model leads to the violation of the null energy condition and a decrease in horizon entropy. The asymptotic future epoch also seems to be unstable based on our dynamical system analysis as well as the stability analysis based on dark energy sound speed.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11840-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11840-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenologically emergent dark energy (PEDE) model is a varying dark energy model with no extra degrees of freedom proposed by Li and Shafieloo (Astrophys J 883(1):L3, 2019) to alleviate the Hubble tension. The statistical consistency of the model has been discussed by many authors. Since the model depicts a phantom dark energy that increases with redshift, its cosmic evolution, particularly during the late phase, must be examined. We discover that the model’s Hubble and deceleration parameters display unusual behaviour in the future, which differs from \(\varLambda \)CDM cosmology. We find the model also follows a distinct evolution in the statefinder plane. The phantom nature of the model leads to the violation of the null energy condition and a decrease in horizon entropy. The asymptotic future epoch also seems to be unstable based on our dynamical system analysis as well as the stability analysis based on dark energy sound speed.

现象学涌现暗能量模型的热演化与稳定性分析
现象学涌现暗能量(PEDE)模型是Li和Shafieloo (Astrophys J 883(1):L3, 2019)为缓解哈勃张力而提出的无额外自由度的变化暗能量模型。该模型的统计一致性已被许多作者讨论过。由于该模型描绘了一个随着红移而增加的暗能量幻影,因此必须对其宇宙演化,特别是在后期阶段进行研究。我们发现该模型的哈勃和减速参数在未来表现出不同寻常的行为,这与\(\varLambda \) CDM宇宙学不同。我们发现该模型在寻态器平面上也遵循一个明显的演变。模型的幻像性质导致了零能条件的破坏和视界熵的减小。基于我们的动力系统分析和基于暗能量声速的稳定性分析,渐近的未来历元似乎也是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信