E-series of character varieties of non-orientable surfaces

IF 0.8 4区 数学 Q2 MATHEMATICS
E. Letellier, F. Rodriguez-Villegas
{"title":"E-series of character varieties of non-orientable surfaces","authors":"E. Letellier, F. Rodriguez-Villegas","doi":"10.5802/aif.3540","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in two kinds of (stacky) character varieties associated to a compact non-orientable surface. (A) We consider the quotient stack of the space of representations of the fundamental group of this surface to GL(n). (B) We choose a set of k-punctures on the surface and a generic k-tuple of semisimple conjugacy classes of GL(n), and we consider the stack of anti-invariant local systems on the orientation cover of the surface with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their E-series (a certain specialization of the mixed Poincare series). In case (B) we give a conjectural formula for the full mixed Poincare series.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3540","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we are interested in two kinds of (stacky) character varieties associated to a compact non-orientable surface. (A) We consider the quotient stack of the space of representations of the fundamental group of this surface to GL(n). (B) We choose a set of k-punctures on the surface and a generic k-tuple of semisimple conjugacy classes of GL(n), and we consider the stack of anti-invariant local systems on the orientation cover of the surface with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their E-series (a certain specialization of the mixed Poincare series). In case (B) we give a conjectural formula for the full mixed Poincare series.
非定向表面的e系列字符品种
本文研究紧致不可定向曲面上的两类(堆叠)字符变体。(A)将该曲面的基群表示空间的商堆栈考虑到GL(n)。(B)我们选择了曲面上的k点集合和GL(n)的半简单共轭类的一般k元组,并考虑了曲面方向覆盖上的反不变局部系统的堆栈,这些系统在给定共轭类给出的点周围具有局部单点。我们计算这些空间在有限域上的点的数目,由此得到它们的e级数(混合庞加莱级数的某种专门化)的公式。在情形(B)中,我们给出了一个完全混合庞加莱级数的推测公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信