The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces

IF 0.7 1区 数学 Q2 MATHEMATICS
A. Avila, C. Matheus, J. Yoccoz
{"title":"The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces","authors":"A. Avila, C. Matheus, J. Yoccoz","doi":"10.3934/JMD.2019002","DOIUrl":null,"url":null,"abstract":"We describe the Kontsevich--Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich--Zorich monodromies of $SU(p,q)$ type are realized by appropriate covering constructions.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2019002","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

We describe the Kontsevich--Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich--Zorich monodromies of $SU(p,q)$ type are realized by appropriate covering constructions.
对称平移曲面Veech–McMullen族上的Kontsevich–Zorich共循环
受Veech和McMullen的启发,我们描述了仿射不变轨道折叠上的Kontsevich-Zorich并环,它来自于(循环)覆盖结构。特别地,使用Filip最近的一篇论文中的术语,我们证明了$SU(p,q)$型的Kontsevich-Zorich半群的所有情况都是通过适当的覆盖结构实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including: Number theory Symplectic geometry Differential geometry Rigidity Quantum chaos Teichmüller theory Geometric group theory Harmonic analysis on manifolds. The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信