Impact of single-piece flow thermo-chemical treatment process conditions on hole quenching deformation

Q3 Materials Science
W. Stachurski, J. Sawicki, P. Zgórniak, E. Wołowiec-Korecka
{"title":"Impact of single-piece flow thermo-chemical treatment process conditions on hole quenching deformation","authors":"W. Stachurski, J. Sawicki, P. Zgórniak, E. Wołowiec-Korecka","doi":"10.5604/01.3001.0053.7476","DOIUrl":null,"url":null,"abstract":"Pulsed low-pressure carburizing (LPC) and omnidirectional high-pressure gas quenching (HPGQ) are innovative methods for quenching the surface layer. The thermo-chemical treatment carried out by this method reduces quenching geometric deformations, with detailed numerical values not available in the literature due to the short existence of this method.Sixteen toothed elements of EN 20MnCr5 steel were subjected to pulsed low-pressure carburising with omnidirectional jet quenching in 4 groups, varying the process temperature (920C, 960C) and in two groups performing a tempering treatment. The elements were tested before machining by measuring their internal hole diameters, radial runout, roundness and cylindricity. These values were tested again after treatment. The direction of change and the statistical significance of the effect of treatment and its parameters, temperature and tempering were analysed.Thermo-chemical treatment significantly affects geometric changes in diameters, roundness, cylindricity and radial runout compared to elements without heat treatment due to physical transformations occurring during this treatment (p<0.05). Changing the process temperature in the value range of 920C-960C affects the hole diameter (makes it smaller) (p<0.05), but does not affect radial runout, cylindricity and roundness. The observed dimensional changes in diameters have numerically small values (<0.005 mm). The tempering treatment can affect the values of average diameters. Its effect on roundness, cylindricity and radial runout was not observed.In the temperature range studied, the method of pulsed low-pressure carburising + omnidirectional high-pressure gas quenching makes it possible to raise the temperature of the process and shorten its duration without significant geometric changes in the treated elements.The method of pulsed low-pressure carburising and omnidirectional high-pressure gas quenching (HPGQ) ensures the maintenance of reproducible quenching deformations at a level significantly lower than conventional processing methods.The method of pulsed low-pressure carburising together with omnidirectional high-pressure gas quenching (HPGQ) is a method that has been used briefly in the industry, and there are few reports on it to date.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.7476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsed low-pressure carburizing (LPC) and omnidirectional high-pressure gas quenching (HPGQ) are innovative methods for quenching the surface layer. The thermo-chemical treatment carried out by this method reduces quenching geometric deformations, with detailed numerical values not available in the literature due to the short existence of this method.Sixteen toothed elements of EN 20MnCr5 steel were subjected to pulsed low-pressure carburising with omnidirectional jet quenching in 4 groups, varying the process temperature (920C, 960C) and in two groups performing a tempering treatment. The elements were tested before machining by measuring their internal hole diameters, radial runout, roundness and cylindricity. These values were tested again after treatment. The direction of change and the statistical significance of the effect of treatment and its parameters, temperature and tempering were analysed.Thermo-chemical treatment significantly affects geometric changes in diameters, roundness, cylindricity and radial runout compared to elements without heat treatment due to physical transformations occurring during this treatment (p<0.05). Changing the process temperature in the value range of 920C-960C affects the hole diameter (makes it smaller) (p<0.05), but does not affect radial runout, cylindricity and roundness. The observed dimensional changes in diameters have numerically small values (<0.005 mm). The tempering treatment can affect the values of average diameters. Its effect on roundness, cylindricity and radial runout was not observed.In the temperature range studied, the method of pulsed low-pressure carburising + omnidirectional high-pressure gas quenching makes it possible to raise the temperature of the process and shorten its duration without significant geometric changes in the treated elements.The method of pulsed low-pressure carburising and omnidirectional high-pressure gas quenching (HPGQ) ensures the maintenance of reproducible quenching deformations at a level significantly lower than conventional processing methods.The method of pulsed low-pressure carburising together with omnidirectional high-pressure gas quenching (HPGQ) is a method that has been used briefly in the industry, and there are few reports on it to date.
单件流热化学处理工艺条件对孔淬火变形的影响
脉冲低压渗碳(LPC)和全方位高压气体淬火(HPGQ)是表面层淬火的创新方法。通过该方法进行的热化学处理减少了淬火几何变形,由于该方法存在时间短,文献中没有详细的数值。对EN 20MnCr5钢的16个齿形元件进行了脉冲低压渗碳和全方位喷射淬火,分4组,改变工艺温度(920C、960C),并分两组进行回火处理。这些元件在加工前通过测量其内孔直径、径向跳动、圆度和圆柱度进行测试。这些值在治疗后再次测试。分析了处理效果的变化方向及其参数、温度和回火的统计意义。与未经热处理的元件相比,由于热处理过程中发生的物理变化,热化学处理显著影响直径、圆度、圆柱度和径向跳动的几何变化(p<0.05)。在920C-960C的数值范围内改变工艺温度会影响孔径(使其变小)(p<0.05),但不会影响径向跳动,圆柱度和圆度。观察到的直径尺寸变化在数值上较小(<0.005 mm)。回火处理会影响平均直径的值。未观察到其对圆度、圆柱度和径向跳动的影响。在所研究的温度范围内,脉冲低压渗碳+全向高压气体淬火的方法可以在处理元件没有显著几何变化的情况下提高工艺温度并缩短工艺持续时间。脉冲低压渗碳和全方位高压气体淬火(HPGQ)的方法确保将可再现的淬火变形保持在明显低于传统加工方法的水平。脉冲低压渗碳与全方位高压气体淬火(HPGQ)相结合的方法是工业上使用过的一种方法,迄今为止很少有报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of materials science and engineering
Archives of materials science and engineering Materials Science-Materials Science (all)
CiteScore
2.90
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信