Bayesian bivariate bent-cable model for longitudinal data

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
G. Dagne
{"title":"Bayesian bivariate bent-cable model for longitudinal data","authors":"G. Dagne","doi":"10.1080/03610926.2022.2053544","DOIUrl":null,"url":null,"abstract":"Abstract Growth curve models are often used to describe a developmental course of a longitudinal response. This paper extends such models to assess multiphasic patterns of developmental trajectories for multivariate response variables. The multiphasic patterns are identified using a bivariate bent-cable model in the context of multivariate growth models. The approach allows for the simultaneous estimation of parameters of multiphasic changes in each response, and also takes into account the correlations among outcomes and random effects for repeated observations over time. The proposed methods are demonstrated using real data from an AIDS clinical study.","PeriodicalId":10531,"journal":{"name":"Communications in Statistics - Theory and Methods","volume":"52 1","pages":"7709 - 7717"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics - Theory and Methods","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610926.2022.2053544","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Growth curve models are often used to describe a developmental course of a longitudinal response. This paper extends such models to assess multiphasic patterns of developmental trajectories for multivariate response variables. The multiphasic patterns are identified using a bivariate bent-cable model in the context of multivariate growth models. The approach allows for the simultaneous estimation of parameters of multiphasic changes in each response, and also takes into account the correlations among outcomes and random effects for repeated observations over time. The proposed methods are demonstrated using real data from an AIDS clinical study.
纵向数据的Bayesian双变量弯曲电缆模型
摘要生长曲线模型通常用于描述纵向反应的发展过程。本文将这种模型扩展到评估多变量反应变量的发育轨迹的多阶段模式。在多变量增长模型的背景下,使用双变量弯曲电缆模型来识别多相模式。该方法允许同时估计每个反应中多相变化的参数,还考虑了随着时间的推移重复观察的结果和随机效应之间的相关性。所提出的方法是用艾滋病临床研究的真实数据证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
12.50%
发文量
320
审稿时长
7.5 months
期刊介绍: The Theory and Methods series intends to publish papers that make theoretical and methodological advances in Probability and Statistics. New applications of statistical and probabilistic methods will also be considered for publication. In addition, special issues dedicated to a specific topic of current interest will also be published in this series periodically, providing an exhaustive and up-to-date review of that topic to the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信