P. Cerchier, K. Brunelli, L. Pezzato, C. Audoin, J. Rakotoniaina, Teresa Sessa, M. Tammaro, G. Sabia, A. Attanasio, Chiara Forte, A. Nisi, Harald Suitner, M. Dabalà
{"title":"Innovative recycling of end of life silicon PV panels: ReSiELP","authors":"P. Cerchier, K. Brunelli, L. Pezzato, C. Audoin, J. Rakotoniaina, Teresa Sessa, M. Tammaro, G. Sabia, A. Attanasio, Chiara Forte, A. Nisi, Harald Suitner, M. Dabalà","doi":"10.31025/2611-4135/2021.15118","DOIUrl":null,"url":null,"abstract":"In Europe, an increasing amount of End of Life (EoL) photovoltaic silicon (PV) panels is expected to be collected in the next 20 years. The silicon PV modules represent a new type of electronic waste that shows challenges and opportunities. \nReSiELP was a European project that aimed at recovery of valuable materials (aluminum, glass, copper, silicon, and silver) from EoL silicon PV modules. During the project a pilot plant, constituted by a furnace, a gas abatement system, an apparatus for the mechanical separation and a hydrometallurgical plant was designed and built. The pilot plan was realized to upscale recycling technology to TRL 7, with a 1500 panels/year capacity. The feasibility of industrial-scale recovery and the reintegration of all recovered materials in their appropriate value chain was investigated. The results obtained showed that 2N purity silicon and 2N purity silver can be recovered with high efficiency. In order to realize a zero-waste plant, a hydrometallurgical process was developed for the wastewater treatment. Moreover, the use of recovered glass for building materials was investigated and the obtained performance seemed comparable with commercial products.","PeriodicalId":44191,"journal":{"name":"Detritus","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detritus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31025/2611-4135/2021.15118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 6
Abstract
In Europe, an increasing amount of End of Life (EoL) photovoltaic silicon (PV) panels is expected to be collected in the next 20 years. The silicon PV modules represent a new type of electronic waste that shows challenges and opportunities.
ReSiELP was a European project that aimed at recovery of valuable materials (aluminum, glass, copper, silicon, and silver) from EoL silicon PV modules. During the project a pilot plant, constituted by a furnace, a gas abatement system, an apparatus for the mechanical separation and a hydrometallurgical plant was designed and built. The pilot plan was realized to upscale recycling technology to TRL 7, with a 1500 panels/year capacity. The feasibility of industrial-scale recovery and the reintegration of all recovered materials in their appropriate value chain was investigated. The results obtained showed that 2N purity silicon and 2N purity silver can be recovered with high efficiency. In order to realize a zero-waste plant, a hydrometallurgical process was developed for the wastewater treatment. Moreover, the use of recovered glass for building materials was investigated and the obtained performance seemed comparable with commercial products.