Representing certain vector-valued function spaces as tensor products

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Abtahi
{"title":"Representing certain vector-valued function spaces as tensor products","authors":"M. Abtahi","doi":"10.1007/s10476-023-0218-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>E</i> be a Banach space. For a topological space <i>X</i>, let <span>\\({{\\cal C}_b}(X,E)\\)</span> be the space of all bounded continuous <i>E</i>-valued functions on <i>X</i>, and let <span>\\({{\\cal C}_K}(X,E)\\)</span> be the subspace of <span>\\({{\\cal C}_b}(X,E)\\)</span> consisting of all functions having a pre-compact image in <i>E</i>. We show that <span>\\({{\\cal C}_K}(X,E)\\)</span> is isometrically isomorphic to the injective tensor product <span>\\({{\\cal C}_b}(X){{\\hat \\otimes}_\\varepsilon}E\\)</span>, and that <span>\\({{\\cal C}_b}(X,E) = {{\\cal C}_b}(X){{\\hat \\otimes}_\\varepsilon}E\\)</span> if and only if <i>E</i> is finite dimensional. Next, we consider the space Lip(<i>X, E</i>) of <i>E</i>-valued Lipschitz operators on a metric space (<i>X, d</i>) and its subspace Lip<sub><i>K</i></sub>(<i>X, E</i>) of Lipschitz compact operators. Utilizing the results on <span>\\({{\\cal C}_b}(X,E)\\)</span>, we prove that Lip<sub><i>K</i></sub>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\({\\rm{Lip}}(X){{\\hat \\otimes}_\\alpha}E\\)</span>, and that <span>\\({\\rm{Lip}}(X,E) = {\\rm{Lip}}(X){{\\hat \\otimes}_\\alpha}E\\)</span> if and only if <i>E</i> is finite dimensional. Finally, we consider the space <i>D</i><sup>1</sup>(<i>X, E</i>) of continuously differentiable functions on a perfect compact plane set <i>X</i> and show that, under certain conditions, <i>D</i><sup>1</sup>(<i>X, E</i>) is isometrically isomorphic to a tensor product <span>\\({D^1}(X){\\hat \\otimes _\\beta}E\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"337 - 353"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0218-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let E be a Banach space. For a topological space X, let \({{\cal C}_b}(X,E)\) be the space of all bounded continuous E-valued functions on X, and let \({{\cal C}_K}(X,E)\) be the subspace of \({{\cal C}_b}(X,E)\) consisting of all functions having a pre-compact image in E. We show that \({{\cal C}_K}(X,E)\) is isometrically isomorphic to the injective tensor product \({{\cal C}_b}(X){{\hat \otimes}_\varepsilon}E\), and that \({{\cal C}_b}(X,E) = {{\cal C}_b}(X){{\hat \otimes}_\varepsilon}E\) if and only if E is finite dimensional. Next, we consider the space Lip(X, E) of E-valued Lipschitz operators on a metric space (X, d) and its subspace LipK(X, E) of Lipschitz compact operators. Utilizing the results on \({{\cal C}_b}(X,E)\), we prove that LipK(X, E) is isometrically isomorphic to a tensor product \({\rm{Lip}}(X){{\hat \otimes}_\alpha}E\), and that \({\rm{Lip}}(X,E) = {\rm{Lip}}(X){{\hat \otimes}_\alpha}E\) if and only if E is finite dimensional. Finally, we consider the space D1(X, E) of continuously differentiable functions on a perfect compact plane set X and show that, under certain conditions, D1(X, E) is isometrically isomorphic to a tensor product \({D^1}(X){\hat \otimes _\beta}E\).

将某些向量值函数空间表示为张量积
设E是Banach空间。对于拓扑空间X,设\({\cal C}_b}(X,E)\)是X上所有有界连续E值函数的空间,设\εE\),并且当且仅当E是有限维的。接下来,我们考虑度量空间(X,d)上E值Lipschitz算子的空间Lip(X,E)及其Lipschitz-紧算子的子空间LipK(X,E)。利用关于({\cal C}_b}(X,E)的结果,我们证明了LipK(X,E)等距同构于张量积({\rm{Lip})(X){\hat\otimes}_\alpha}E\),并且当且仅当E是有限维的。最后,我们考虑了完备紧致平面集X上连续可微函数的空间D1(X,E),并证明了在一定条件下,D1(X、E)等距同构于张量积({D^1}(X){\hat\otimes_\beta}E\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信