Steklov problems for the p−Laplace operator involving Lq-norm

Q3 Mathematics
M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani
{"title":"Steklov problems for the p−Laplace operator involving Lq-norm","authors":"M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani","doi":"10.2478/mjpaa-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \\left\\{ {\\matrix{{{\\Delta _p}u = {{\\left| u \\right|}^{p - 2}}u} \\hfill & {{\\rm{in}}\\,\\Omega ,} \\hfill \\cr {{{\\left| {\\nabla u} \\right|}^{p - 2}}{{\\partial u} \\over {\\partial v}} = \\lambda \\left\\| u \\right\\|_{q,\\partial \\Omega }^{p - q}{{\\left| u \\right|}^{q - 2}}u} \\hfill & {{\\rm{on}}\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"228 - 243"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.
涉及Lq范数的p−拉普拉斯算子的Steklov问题
摘要本文研究了形式为{Δpu=|u|p-2uin的非线性Steklov问题的谱 Ω,|Şu|p-2⏴u⏴v=λ‖u‖q,⏴Ωp-q|u|q-2uon ∂Ω,\left矩阵{{\Delta _p}u={\left | u \right |}^{p-2}u}\hfill&{\rm{in}}\,\Omega,}\hfill \cr{\rm{on}}\,\ partial \ Omega,}\ hfill \ cr}\ right。其中Ω是中的光滑有界域ℝN(N≥1),λ是一个起特征值作用的实数,未知数u∈W1,p(Ω)。利用C1流形上的Ljusterneck-Shnielmann理论和Sobolev迹嵌入,我们证明了上述问题的特征值(λk)k≥1的递增序列正的存在性。然后,我们确定第一特征值是简单且孤立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信