{"title":"Steklov problems for the p−Laplace operator involving Lq-norm","authors":"M. D. M. Alaoui, Abdelouahd El Khalil, A. Touzani","doi":"10.2478/mjpaa-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \\left\\{ {\\matrix{{{\\Delta _p}u = {{\\left| u \\right|}^{p - 2}}u} \\hfill & {{\\rm{in}}\\,\\Omega ,} \\hfill \\cr {{{\\left| {\\nabla u} \\right|}^{p - 2}}{{\\partial u} \\over {\\partial v}} = \\lambda \\left\\| u \\right\\|_{q,\\partial \\Omega }^{p - q}{{\\left| u \\right|}^{q - 2}}u} \\hfill & {{\\rm{on}}\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"228 - 243"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form { Δpu=| u |p-2uin Ω,| ∇u |p-2∂u∂v=λ‖ u ‖q,∂Ωp-q| u |q-2uon ∂Ω, \left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill & {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill & {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝN(N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W1,p(Ω). Using the Ljusterneck-Shnirelmann theory on C1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λk)k≥1, for the above problem. We then establish that the first eigenvalue is simple and isolated.