An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives

Melani Barrios, G. Reyero
{"title":"An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives","authors":"Melani Barrios, G. Reyero","doi":"10.19139/soic-2310-5070-865","DOIUrl":null,"url":null,"abstract":"In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"590-601"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.
一个仅依赖于Caputo导数的欧拉-拉格朗日方程解经典导数的分数阶变分问题
在这篇文章中,我们提出了具有拉格朗日量的分数变分问题的进展,该问题依赖于Caputo分数导数和经典导数。对于基本问题和等周问题,给出了分数阶欧拉-拉格朗日方程的新公式,一个是积分形式,另一个仅依赖于Caputo导数。其优点是Caputo导数比Riemann-Liouville导数更适合建模问题,并且使计算更容易解决,因为在某些情况下,它的行为与经典导数的行为相似。最后,得到了一个特殊变分问题的新的精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信