Computing the Fourier Transformation over Temporal Data Streams (Invited Talk)

Time Pub Date : 2019-10-19 DOI:10.4230/LIPIcs.TIME.2019.1
Michael H. Böhlen, Muhammad Saad
{"title":"Computing the Fourier Transformation over Temporal Data Streams (Invited Talk)","authors":"Michael H. Böhlen, Muhammad Saad","doi":"10.4230/LIPIcs.TIME.2019.1","DOIUrl":null,"url":null,"abstract":"In radio astronomy the sky is continuously scanned to collect frequency information about celestial objects. The inverse 2D Fourier transformation is used to generate images of the sky from the collected frequency information. We propose an algorithm that incrementally refines images by processing frequency information as it arrives in a temporal data stream. A direct implementation of the refinement with the discrete Fourier transformation requires O(N^2) complex multiplications to process an element of the stream. We propose a new algorithm that avoids recomputations and only requires O(N) complex multiplications.","PeriodicalId":75226,"journal":{"name":"Time","volume":"1 1","pages":"1:1-1:4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2019.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In radio astronomy the sky is continuously scanned to collect frequency information about celestial objects. The inverse 2D Fourier transformation is used to generate images of the sky from the collected frequency information. We propose an algorithm that incrementally refines images by processing frequency information as it arrives in a temporal data stream. A direct implementation of the refinement with the discrete Fourier transformation requires O(N^2) complex multiplications to process an element of the stream. We propose a new algorithm that avoids recomputations and only requires O(N) complex multiplications.
计算时间数据流的傅里叶变换(特邀演讲)
在射电天文学中,不断扫描天空以收集天体的频率信息。利用二维傅里叶反变换从采集到的频率信息生成天空图像。我们提出了一种算法,该算法通过处理频率信息来逐步细化图像,因为它到达一个时间数据流。用离散傅里叶变换进行细化的直接实现需要O(N^2)次复乘法来处理流的一个元素。我们提出了一种新的算法,避免了重复计算,只需要O(N)次复乘法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信