A Novel Flexible Class of Intervened Poisson Distribution by Lagrangian Approach

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-01-15 DOI:10.3390/stats6010010
M. Irshad, M. Monisha, C. Chesneau, R. Maya, D. S. Shibu
{"title":"A Novel Flexible Class of Intervened Poisson Distribution by Lagrangian Approach","authors":"M. Irshad, M. Monisha, C. Chesneau, R. Maya, D. S. Shibu","doi":"10.3390/stats6010010","DOIUrl":null,"url":null,"abstract":"The zero-truncated Poisson distribution (ZTPD) generates a statistical model that could be appropriate when observations begin once at least one event occurs. The intervened Poisson distribution (IPD) is a substitute for the ZTPD, in which some intervention processes may change the mean of the rare events. These two zero-truncated distributions exhibit underdispersion (i.e., their variance is less than their mean). In this research, we offer an alternative solution for dealing with intervention problems by proposing a generalization of the IPD by a Lagrangian approach called the Lagrangian intervened Poisson distribution (LIPD), which in fact generalizes both the ZTPD and the IPD. As a notable feature, it has the ability to analyze both overdispersed and underdispersed datasets. In addition, the LIPD has a closed-form expression of all of its statistical characteristics, as well as an increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function. A consequent part is devoted to its statistical application. The maximum likelihood estimation method is considered, and the effectiveness of the estimates is demonstrated through a simulated study. To evaluate the significance of the new parameter in the LIPD, a generalized likelihood ratio test is performed. Subsequently, we present a new count regression model that is suitable for both overdispersed and underdispersed datasets using the mean-parametrized form of the LIPD. Additionally, the LIPD’s relevance and application are shown using real-world datasets.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The zero-truncated Poisson distribution (ZTPD) generates a statistical model that could be appropriate when observations begin once at least one event occurs. The intervened Poisson distribution (IPD) is a substitute for the ZTPD, in which some intervention processes may change the mean of the rare events. These two zero-truncated distributions exhibit underdispersion (i.e., their variance is less than their mean). In this research, we offer an alternative solution for dealing with intervention problems by proposing a generalization of the IPD by a Lagrangian approach called the Lagrangian intervened Poisson distribution (LIPD), which in fact generalizes both the ZTPD and the IPD. As a notable feature, it has the ability to analyze both overdispersed and underdispersed datasets. In addition, the LIPD has a closed-form expression of all of its statistical characteristics, as well as an increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function. A consequent part is devoted to its statistical application. The maximum likelihood estimation method is considered, and the effectiveness of the estimates is demonstrated through a simulated study. To evaluate the significance of the new parameter in the LIPD, a generalized likelihood ratio test is performed. Subsequently, we present a new count regression model that is suitable for both overdispersed and underdispersed datasets using the mean-parametrized form of the LIPD. Additionally, the LIPD’s relevance and application are shown using real-world datasets.
基于拉格朗日方法的一类新的柔性干涉泊松分布
零截断泊松分布(ZTPD)生成的统计模型适用于至少一次事件发生后开始观测的情况。干预泊松分布(IPD)可以代替ZTPD,其中一些干预过程可能会改变罕见事件的平均值。这两个零截断分布表现为不充分分散(即,它们的方差小于平均值)。在这项研究中,我们提出了一种处理干预问题的替代解决方案,即通过拉格朗日方法对IPD进行推广,称为拉格朗日干预泊松分布(LIPD),它实际上推广了ZTPD和IPD。作为一个显著的特点,它具有分析过分散和欠分散数据集的能力。此外,LIPD具有其所有统计特征的封闭表达式,以及增加、减少、浴缸形和倒置浴缸形的危险率函数。随后的一部分专门讨论它的统计应用。考虑了极大似然估计方法,并通过仿真研究验证了估计的有效性。为了评估LIPD中新参数的显著性,进行了广义似然比检验。随后,我们提出了一种新的计数回归模型,该模型适用于使用LIPD的平均参数化形式的过分散和欠分散数据集。此外,LIPD的相关性和应用使用了真实世界的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信