Yilin Niu, Fei Huang, W. Liu, Jianwei Cui, Bin Wang, Minlie Huang
{"title":"Bridging the Gap between Synthetic and Natural Questions via Sentence Decomposition for Semantic Parsing","authors":"Yilin Niu, Fei Huang, W. Liu, Jianwei Cui, Bin Wang, Minlie Huang","doi":"10.1162/tacl_a_00552","DOIUrl":null,"url":null,"abstract":"Semantic parsing maps natural language questions into logical forms, which can be executed against a knowledge base for answers. In real-world applications, the performance of a parser is often limited by the lack of training data. To facilitate zero-shot learning, data synthesis has been widely studied to automatically generate paired questions and logical forms. However, data synthesis methods can hardly cover the diverse structures in natural languages, leading to a large gap in sentence structure between synthetic and natural questions. In this paper, we propose a decomposition-based method to unify the sentence structures of questions, which benefits the generalization to natural questions. Experiments demonstrate that our method significantly improves the semantic parser trained on synthetic data (+7.9% on KQA and +8.9% on ComplexWebQuestions in terms of exact match accuracy). Extensive analysis demonstrates that our method can better generalize to natural questions with novel text expressions compared with baselines. Besides semantic parsing, our idea potentially benefits other semantic understanding tasks by mitigating the distracting structure features. To illustrate this, we extend our method to the task of sentence embedding learning, and observe substantial improvements on sentence retrieval (+13.1% for Hit@1).","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"11 1","pages":"367-383"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00552","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic parsing maps natural language questions into logical forms, which can be executed against a knowledge base for answers. In real-world applications, the performance of a parser is often limited by the lack of training data. To facilitate zero-shot learning, data synthesis has been widely studied to automatically generate paired questions and logical forms. However, data synthesis methods can hardly cover the diverse structures in natural languages, leading to a large gap in sentence structure between synthetic and natural questions. In this paper, we propose a decomposition-based method to unify the sentence structures of questions, which benefits the generalization to natural questions. Experiments demonstrate that our method significantly improves the semantic parser trained on synthetic data (+7.9% on KQA and +8.9% on ComplexWebQuestions in terms of exact match accuracy). Extensive analysis demonstrates that our method can better generalize to natural questions with novel text expressions compared with baselines. Besides semantic parsing, our idea potentially benefits other semantic understanding tasks by mitigating the distracting structure features. To illustrate this, we extend our method to the task of sentence embedding learning, and observe substantial improvements on sentence retrieval (+13.1% for Hit@1).
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.