A Note on the Locally Irregular Edge Colorings of Cacti

IF 1 Q1 MATHEMATICS
J. Sedlar, Riste vSkrekovski
{"title":"A Note on the Locally Irregular Edge Colorings of Cacti","authors":"J. Sedlar, Riste vSkrekovski","doi":"10.47443/dml.2022.069","DOIUrl":null,"url":null,"abstract":"A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity Conjecture. In this paper we establish that X'irr(G)<= 4 for all colorable cactus graphs.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity Conjecture. In this paper we establish that X'irr(G)<= 4 for all colorable cactus graphs.
仙人掌局部不规则边着色的注释
如果每条边的端点的度数不同,则图是局部不规则的。图G的边着色是局部不规则的,如果每种颜色都诱导G的局部不规则子图。可着色图G是任何允许局部不规则边着色的图。可着色图G的局部不规则色指数X'irr(G)是G的局部非规则边着色所需的最小颜色数。局部非规则性猜想声称所有可着色图的局部非正则边着色最多需要3种颜色。最近,已经观察到该猜想不适用于蝴蝶结图B,因为B是可着色的,并且局部不规则边着色需要至少4种颜色。由于B是仙人掌图,并且所有不可着色图也是仙人掌图,因此这似乎是局部不规则猜想的一类相关图。本文建立了所有可着色仙人掌图的X'irr(G)<=4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信