{"title":"A Note on the Locally Irregular Edge Colorings of Cacti","authors":"J. Sedlar, Riste vSkrekovski","doi":"10.47443/dml.2022.069","DOIUrl":null,"url":null,"abstract":"A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity Conjecture. In this paper we establish that X'irr(G)<= 4 for all colorable cactus graphs.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a locally irregular edge coloring. The locally irregular chromatic index X'irr(G) of a colorable graph G is the smallest number of colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity Conjecture. In this paper we establish that X'irr(G)<= 4 for all colorable cactus graphs.