{"title":"Improving sand flow rate measurement using the wavelet transform and ultrasonic sensors","authors":"H. Seraj, B. Evans, M. Sarmadivaleh","doi":"10.21307/IJSSIS-2021-001","DOIUrl":null,"url":null,"abstract":"Abstract Accurate sand flow rate measurement is needed to minimize the side effects of sand production in gas fields. There are concerns about the accuracy of sand flow measurement using the sand measuring devices available on the market. In this paper, ultrasonic sensors and discrete wavelet transform signal analysis method is used to measure the sand flow rate. It is found that the strength of the discrete wavelet coefficients in the frequency range of 15–62 kHz has a linear relationship with sand flow rate. This finding provides a new methodology to accurately measure sand flow rate. The proposed method does not need fluid velocity as a prerequisite for sand rate measurement, so it greatly simplifies the system design when flow meters are not used for fluid velocity measurement. Also, this method has a much simpler calibration procedure compared to that of the sand detectors commonly used in the industry.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"14 1","pages":"1 - 13"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/IJSSIS-2021-001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Accurate sand flow rate measurement is needed to minimize the side effects of sand production in gas fields. There are concerns about the accuracy of sand flow measurement using the sand measuring devices available on the market. In this paper, ultrasonic sensors and discrete wavelet transform signal analysis method is used to measure the sand flow rate. It is found that the strength of the discrete wavelet coefficients in the frequency range of 15–62 kHz has a linear relationship with sand flow rate. This finding provides a new methodology to accurately measure sand flow rate. The proposed method does not need fluid velocity as a prerequisite for sand rate measurement, so it greatly simplifies the system design when flow meters are not used for fluid velocity measurement. Also, this method has a much simpler calibration procedure compared to that of the sand detectors commonly used in the industry.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity