Assessment Methods for Evaluation of Recommender Systems: A Survey

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Madhusree Kuanr, Puspanjali Mohapatra
{"title":"Assessment Methods for Evaluation of Recommender Systems: A Survey","authors":"Madhusree Kuanr, Puspanjali Mohapatra","doi":"10.2478/fcds-2021-0023","DOIUrl":null,"url":null,"abstract":"Abstract The recommender system (RS) filters out important information from a large pool of dynamically generated information to set some important decisions in terms of some recommendations according to the user’s past behavior, preferences, and interests. A recommender system is the subclass of information filtering systems that can anticipate the needs of the user before the needs are recognized by the user in the near future. But an evaluation of the recommender system is an important factor as it involves the trust of the user in the system. Various incompatible assessment methods are used for the evaluation of recommender systems, but the proper evaluation of a recommender system needs a particular objective set by the recommender system. This paper surveys and organizes the concepts and definitions of various metrics to assess recommender systems. Also, this survey tries to find out the relationship between the assessment methods and their categorization by type.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"46 1","pages":"393 - 421"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2021-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The recommender system (RS) filters out important information from a large pool of dynamically generated information to set some important decisions in terms of some recommendations according to the user’s past behavior, preferences, and interests. A recommender system is the subclass of information filtering systems that can anticipate the needs of the user before the needs are recognized by the user in the near future. But an evaluation of the recommender system is an important factor as it involves the trust of the user in the system. Various incompatible assessment methods are used for the evaluation of recommender systems, but the proper evaluation of a recommender system needs a particular objective set by the recommender system. This paper surveys and organizes the concepts and definitions of various metrics to assess recommender systems. Also, this survey tries to find out the relationship between the assessment methods and their categorization by type.
评价推荐系统的评估方法:综述
摘要推荐系统(RS)根据用户过去的行为、偏好和兴趣,从大量动态生成的信息池中过滤出重要的信息,对一些推荐设置一些重要的决策。推荐系统是信息过滤系统的一个子类,它可以在用户在不久的将来识别需求之前预测用户的需求。但是对推荐系统的评价是一个重要的因素,因为它涉及到用户对系统的信任。推荐系统的评价采用了各种不兼容的评价方法,但要对推荐系统进行正确的评价,需要推荐系统设定一个特定的目标。本文调查和组织了各种指标的概念和定义,以评估推荐系统。同时,本调查也试图找出评估方法与其类型分类之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信