On $m$-th roots of nilpotent matrices

Pub Date : 2021-12-14 DOI:10.13001/ela.2021.6331
Semra Ozturk
{"title":"On $m$-th roots of nilpotent matrices","authors":"Semra Ozturk","doi":"10.13001/ela.2021.6331","DOIUrl":null,"url":null,"abstract":"A new necessary and sufficient condition for the existence of an $m$-th root of a nilpotent matrix in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan form of the $m$-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the existence of an $m$-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in the literature on the total number of Jordan blocks of a nilpotent matrix having an $m$-th root is corrected and generalized. Moreover, for a singular matrix having an $m$-th root with a pair of nilpotent Jordan blocks of sizes $s$ and $l$, a new $m$-th root is constructed by replacing that pair by another one of sizes $s+i$ and $l-i$, for special $s,l,i$. This method applies to solutions of a system of linear equations having a special matrix of coefficients. In addition, for a matrix $A$ over an arbitrary field that is a sum of two commuting matrices, several results for the existence of $m$-th roots of $A^k$ are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.6331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new necessary and sufficient condition for the existence of an $m$-th root of a nilpotent matrix in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan form of the $m$-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the existence of an $m$-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in the literature on the total number of Jordan blocks of a nilpotent matrix having an $m$-th root is corrected and generalized. Moreover, for a singular matrix having an $m$-th root with a pair of nilpotent Jordan blocks of sizes $s$ and $l$, a new $m$-th root is constructed by replacing that pair by another one of sizes $s+i$ and $l-i$, for special $s,l,i$. This method applies to solutions of a system of linear equations having a special matrix of coefficients. In addition, for a matrix $A$ over an arbitrary field that is a sum of two commuting matrices, several results for the existence of $m$-th roots of $A^k$ are obtained.
分享
查看原文
关于幂零矩阵的$m$-根
得到了幂零矩阵第$m$-根存在于Jordan块的乘性方面的一个新的充要条件,并将其表示为一个适用于计算机编程的非负整数项线性方程组。因此,幂零矩阵$m$-次幂的Jordan形式的计算被简化为单矩阵乘法;相反,幂零矩阵的第$m$-根的存在性被简化为相应线性方程组的非负整数解的存在性。此外,对文献中关于具有第$m$-根的幂零矩阵的Jordan块总数的一个错误结果进行了纠正和推广。此外,对于具有第$m$-个根的奇异矩阵和一对大小为$s$和$l$的幂零Jordan块,通过用另一个大小为$s+i$和$l-i$的块替换该对来构造新的第$m$个根,对于特殊的$s,l,i$。这种方法适用于具有特殊系数矩阵的线性方程组的解。此外,对于任意域上的矩阵$a$,它是两个交换矩阵的和,得到了$a^k$的$m$根存在的几个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信