{"title":"On $m$-th roots of nilpotent matrices","authors":"Semra Ozturk","doi":"10.13001/ela.2021.6331","DOIUrl":null,"url":null,"abstract":"A new necessary and sufficient condition for the existence of an $m$-th root of a nilpotent matrix in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan form of the $m$-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the existence of an $m$-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in the literature on the total number of Jordan blocks of a nilpotent matrix having an $m$-th root is corrected and generalized. Moreover, for a singular matrix having an $m$-th root with a pair of nilpotent Jordan blocks of sizes $s$ and $l$, a new $m$-th root is constructed by replacing that pair by another one of sizes $s+i$ and $l-i$, for special $s,l,i$. This method applies to solutions of a system of linear equations having a special matrix of coefficients. In addition, for a matrix $A$ over an arbitrary field that is a sum of two commuting matrices, several results for the existence of $m$-th roots of $A^k$ are obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.6331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A new necessary and sufficient condition for the existence of an $m$-th root of a nilpotent matrix in terms of the multiplicities of Jordan blocks is obtained and expressed as a system of linear equations with nonnegative integer entries which is suitable for computer programming. Thus, computation of the Jordan form of the $m$-th power of a nilpotent matrix is reduced to a single matrix multiplication; conversely, the existence of an $m$-th root of a nilpotent matrix is reduced to the existence of a nonnegative integer solution to the corresponding system of linear equations. Further, an erroneous result in the literature on the total number of Jordan blocks of a nilpotent matrix having an $m$-th root is corrected and generalized. Moreover, for a singular matrix having an $m$-th root with a pair of nilpotent Jordan blocks of sizes $s$ and $l$, a new $m$-th root is constructed by replacing that pair by another one of sizes $s+i$ and $l-i$, for special $s,l,i$. This method applies to solutions of a system of linear equations having a special matrix of coefficients. In addition, for a matrix $A$ over an arbitrary field that is a sum of two commuting matrices, several results for the existence of $m$-th roots of $A^k$ are obtained.