{"title":"Transcendence and continued fraction expansion\nof values of Hecke–Mahler series","authors":"Y. Bugeaud, M. Laurent","doi":"10.4064/aa220323-18-1","DOIUrl":null,"url":null,"abstract":"Let $\\theta$ and $\\rho$ be real numbers with $0 \\le \\theta, \\rho<1$ and $\\theta$ irrational. We show that the Hecke-Mahler series $$ F_{\\theta, \\rho} (z_1, z_2) = \\sum_{k_1 \\ge 1} \\, \\sum_{k_2 = 1}^{\\lfloor k_1 \\theta + \\rho \\rfloor} \\, z_1^{k_1} z_2^{k_2}, $$ where $\\lfloor \\cdot \\rfloor$ denotes the integer part function, takes transcendental values at any algebraic point $(\\beta, \\alpha)$ with $0<|\\beta|, |\\beta \\alpha^\\theta |<1$. This extends earlier results of Mahler (1929) and Loxton and van der Poorten (1977), who settled the case $\\rho=0$. Furthermore, for positive integers $b$ and $a$, with $b \\ge 2$ and $a$ congruent to $1$ modulo $b-1$, we give the continued fraction expansion of the number $$ {(b-1)^2\\over b} F_{\\theta, \\rho} \\left({1\\over b}, {1\\over a}\\right)+{\\lfloor \\theta+\\rho\\rfloor(b-1)\\over b^2a}, $$ from which we derive a formula giving the irrationality exponent of $F_{\\theta, \\rho} (1/b, 1/a)$.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220323-18-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $\theta$ and $\rho$ be real numbers with $0 \le \theta, \rho<1$ and $\theta$ irrational. We show that the Hecke-Mahler series $$ F_{\theta, \rho} (z_1, z_2) = \sum_{k_1 \ge 1} \, \sum_{k_2 = 1}^{\lfloor k_1 \theta + \rho \rfloor} \, z_1^{k_1} z_2^{k_2}, $$ where $\lfloor \cdot \rfloor$ denotes the integer part function, takes transcendental values at any algebraic point $(\beta, \alpha)$ with $0<|\beta|, |\beta \alpha^\theta |<1$. This extends earlier results of Mahler (1929) and Loxton and van der Poorten (1977), who settled the case $\rho=0$. Furthermore, for positive integers $b$ and $a$, with $b \ge 2$ and $a$ congruent to $1$ modulo $b-1$, we give the continued fraction expansion of the number $$ {(b-1)^2\over b} F_{\theta, \rho} \left({1\over b}, {1\over a}\right)+{\lfloor \theta+\rho\rfloor(b-1)\over b^2a}, $$ from which we derive a formula giving the irrationality exponent of $F_{\theta, \rho} (1/b, 1/a)$.