An alternative proof of the Hilbert-style axiomatization for the \(\{\wedge ,\vee \}\)-fragment of classical propositional logic

IF 0.3 4区 数学 Q1 Arts and Humanities
Luciano J. González
{"title":"An alternative proof of the Hilbert-style axiomatization for the \\(\\{\\wedge ,\\vee \\}\\)-fragment of classical propositional logic","authors":"Luciano J. González","doi":"10.1007/s00153-022-00815-9","DOIUrl":null,"url":null,"abstract":"<div><p>Dyrda and Prucnal gave a Hilbert-style axiomatization for the <span>\\(\\{\\wedge ,\\vee \\}\\)</span>-fragment of classical propositional logic. Their proof of completeness follows a different approach to the standard one proving the completeness of classical propositional logic. In this note, we present an alternative proof of Dyrda and Prucnal’s result following the standard arguments which prove the completeness of classical propositional logic.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00815-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Dyrda and Prucnal gave a Hilbert-style axiomatization for the \(\{\wedge ,\vee \}\)-fragment of classical propositional logic. Their proof of completeness follows a different approach to the standard one proving the completeness of classical propositional logic. In this note, we present an alternative proof of Dyrda and Prucnal’s result following the standard arguments which prove the completeness of classical propositional logic.

经典命题逻辑$$\{\wedge ,\vee \}$$∧{,∨-片段的hilbert式公性的另一种证明}
Dyrda和Prucnal给出了经典命题逻辑\(\{\wedge ,\vee \}\)片段的hilbert式公理化。他们对完备性的证明采用了一种不同于证明经典命题逻辑完备性的标准方法。本文在证明经典命题逻辑完备性的标准论证之后,给出了Dyrda和Prucnal结果的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信