Ariel Antonio Quintana‐Baquedano, J. Sánchez-Salas, D. X. Flores-Cervantes
{"title":"A review of technologies for the removal of sulfate from drinking water","authors":"Ariel Antonio Quintana‐Baquedano, J. Sánchez-Salas, D. X. Flores-Cervantes","doi":"10.1111/wej.12889","DOIUrl":null,"url":null,"abstract":"Because of the current water crisis worldwide, it is of great importance to find alternative sources of drinking water, such as sulfur water. This review analyses laboratory, pilot and industrial‐scale technologies available for sulfate removal from water produced for human consumption, from naturally occurring sulfur water and that resulting from human activities. Most of them exceed 90% removal efficiencies. However, the concentrations treated in each study were different; some technologies evaluate concentrations below recommended limits (250 mg L−1), while others evaluate much higher concentrations but require previous treatments. The technologies with higher energy requirements such as reverse osmosis and ion exchange have better removal efficiencies but require larger initial investments and have higher operational costs. Biological treatments, on the other hand, with lower energy and material requirements, are less expensive but require long retention times and depend on the season of the year and/or environmental conditions. Lastly, adsorption removal technologies fall in the middle, especially for energy requirements and operational costs and retention times. This review shows that although there are a variety of sulfate removal technologies suitable for use, there is still room for a novel methodology that removes sulfates from a wider range of concentrations more economically, more effectively and in less time than what is currently available.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12889","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Because of the current water crisis worldwide, it is of great importance to find alternative sources of drinking water, such as sulfur water. This review analyses laboratory, pilot and industrial‐scale technologies available for sulfate removal from water produced for human consumption, from naturally occurring sulfur water and that resulting from human activities. Most of them exceed 90% removal efficiencies. However, the concentrations treated in each study were different; some technologies evaluate concentrations below recommended limits (250 mg L−1), while others evaluate much higher concentrations but require previous treatments. The technologies with higher energy requirements such as reverse osmosis and ion exchange have better removal efficiencies but require larger initial investments and have higher operational costs. Biological treatments, on the other hand, with lower energy and material requirements, are less expensive but require long retention times and depend on the season of the year and/or environmental conditions. Lastly, adsorption removal technologies fall in the middle, especially for energy requirements and operational costs and retention times. This review shows that although there are a variety of sulfate removal technologies suitable for use, there is still room for a novel methodology that removes sulfates from a wider range of concentrations more economically, more effectively and in less time than what is currently available.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure