Integrity monitoring of Graph‐SLAM using GPS and fish‐eye camera

Sriramya Bhamidipati, G. Gao
{"title":"Integrity monitoring of Graph‐SLAM using GPS and fish‐eye camera","authors":"Sriramya Bhamidipati, G. Gao","doi":"10.1002/navi.381","DOIUrl":null,"url":null,"abstract":"We propose a Simultaneous Localization and Mapping (SLAM)-based Integrity Monitoring (IM) algorithm using GPS and fish-eye camera to compute the protection levels while accounting for multiple faults in GPS and vision. We perform graph optimization using GPS pseudoranges, pixel intensities, vehicle dynamics, and satellite ephemeris to simultaneously localize the vehicle, GPS satellites, and key image pixels in the world frame. We estimate the fault mode vector by analyzing the temporal correlation across pseudorange residuals and spatial correlation across pixel intensity residuals. To isolate the vision faults, we develop a superpixel-based piecewise random sample consensus. For the estimated fault mode, we compute the protection levels by performing worst-case failure slope analysis on the batch realization of linearized Graph-SLAM formulation. We perform real-world experiments in an alleyway in Stanford, California and a semi-urban area in Champaign, Illinois. We demonstrate higher localization accuracy and tighter protection levels as compared to GPS-only SLAM-based IM.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"67 1","pages":"583-600"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/navi.381","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a Simultaneous Localization and Mapping (SLAM)-based Integrity Monitoring (IM) algorithm using GPS and fish-eye camera to compute the protection levels while accounting for multiple faults in GPS and vision. We perform graph optimization using GPS pseudoranges, pixel intensities, vehicle dynamics, and satellite ephemeris to simultaneously localize the vehicle, GPS satellites, and key image pixels in the world frame. We estimate the fault mode vector by analyzing the temporal correlation across pseudorange residuals and spatial correlation across pixel intensity residuals. To isolate the vision faults, we develop a superpixel-based piecewise random sample consensus. For the estimated fault mode, we compute the protection levels by performing worst-case failure slope analysis on the batch realization of linearized Graph-SLAM formulation. We perform real-world experiments in an alleyway in Stanford, California and a semi-urban area in Champaign, Illinois. We demonstrate higher localization accuracy and tighter protection levels as compared to GPS-only SLAM-based IM.
利用GPS和鱼眼相机监测Graph - SLAM的完整性
我们提出了一种基于同步定位和映射(SLAM)的完整性监测(IM)算法,该算法使用GPS和鱼眼相机来计算保护级别,同时考虑GPS和视觉中的多个故障。我们使用GPS伪距、像素强度、车辆动力学和卫星星历表进行图形优化,以同时定位世界帧中的车辆、GPS卫星和关键图像像素。我们通过分析伪距残差之间的时间相关性和像素强度残差之间的空间相关性来估计故障模式向量。为了隔离视觉缺陷,我们开发了一种基于超像素的分段随机样本一致性。对于估计的故障模式,我们通过对线性化Graph SLAM公式的批量实现进行最坏情况下的故障斜率分析来计算保护级别。我们在加利福尼亚州斯坦福市的一条小巷和伊利诺伊州香槟市的一个半城市地区进行了真实世界的实验。与仅基于GPS的SLAM IM相比,我们展示了更高的定位精度和更严格的保护级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信