Triply Periodic Minimal Surfaces: An Overview of Their Features, Failure Mechanisms, and Applications

Q4 Energy
Arpit Gupta, S. Babu L.
{"title":"Triply Periodic Minimal Surfaces: An Overview of Their Features, Failure Mechanisms, and Applications","authors":"Arpit Gupta, S. Babu L.","doi":"10.18311/jmmf/2022/31230","DOIUrl":null,"url":null,"abstract":"Additive manufacturing has made it possible to create complicated geometries and lattice structures, and it is also the greatest approach for producing nature-inspired cellular structures. Triply periodic minimal surface (TPMS) cellular structure, which is additively built, has a high strength-to-weight ratio, making it useful in various applications, including structural weight reduction, biomedical, aerospace, and impact absorption. TPMS is a natural-inspired surface with zero mean curvature and a local minimal area. The type of structure, loading mechanism, unit cell characteristics, and relative density significantly affect the structure’s strength and stiffness. As a result, this article will cover the history, classification, characteristics, manufacturing processes, failure mechanism, and applications of the TPMS.","PeriodicalId":39575,"journal":{"name":"Journal of Mines, Metals and Fuels","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mines, Metals and Fuels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jmmf/2022/31230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

Abstract

Additive manufacturing has made it possible to create complicated geometries and lattice structures, and it is also the greatest approach for producing nature-inspired cellular structures. Triply periodic minimal surface (TPMS) cellular structure, which is additively built, has a high strength-to-weight ratio, making it useful in various applications, including structural weight reduction, biomedical, aerospace, and impact absorption. TPMS is a natural-inspired surface with zero mean curvature and a local minimal area. The type of structure, loading mechanism, unit cell characteristics, and relative density significantly affect the structure’s strength and stiffness. As a result, this article will cover the history, classification, characteristics, manufacturing processes, failure mechanism, and applications of the TPMS.
三周期极小曲面:其特征、失效机制及应用概述
增材制造使创造复杂的几何形状和晶格结构成为可能,也是生产受自然启发的细胞结构的最佳方法。三周期最小表面(TPMS)蜂窝结构是额外构建的,具有高强度重量比,可用于各种应用,包括结构减重、生物医学、航空航天和冲击吸收。胎压监测系统是一个具有零平均曲率和局部最小面积的自然曲面。结构类型、加载机制、单元特性和相对密度显著影响结构的强度和刚度。因此,本文将介绍胎压监测系统的历史、分类、特点、制造工艺、故障机理和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mines, Metals and Fuels
Journal of Mines, Metals and Fuels Energy-Fuel Technology
CiteScore
0.20
自引率
0.00%
发文量
101
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信