{"title":"Deficiency indices of block Jacobi matrices and Miura transformation","authors":"A. Osipov","doi":"10.1515/spma-2022-0160","DOIUrl":null,"url":null,"abstract":"Abstract We study the infinite Jacobi block matrices under the discrete Miura-type transformations which relate matrix Volterra and Toda lattice systems to each other and the situations when the deficiency indices of the corresponding operators are the same. A special attention is paid to the completely indeterminate case (i.e., then the deficiency indices of the corresponding block Jacobi operators are maximal). It is shown that there exists a Miura transformation which retains the complete indeterminacy of Jacobi block matrices appearing in the Lax representation for such systems, namely, if the Lax matrix of Volterra system is completely indeterminate, then so is the Lax matrix of the corresponding Toda system, and vice versa. We consider an implication of the obtained results to the study of matrix orthogonal polynomials as well as to the analysis of self-adjointness of scalar Jacobi operators.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"234 - 250"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We study the infinite Jacobi block matrices under the discrete Miura-type transformations which relate matrix Volterra and Toda lattice systems to each other and the situations when the deficiency indices of the corresponding operators are the same. A special attention is paid to the completely indeterminate case (i.e., then the deficiency indices of the corresponding block Jacobi operators are maximal). It is shown that there exists a Miura transformation which retains the complete indeterminacy of Jacobi block matrices appearing in the Lax representation for such systems, namely, if the Lax matrix of Volterra system is completely indeterminate, then so is the Lax matrix of the corresponding Toda system, and vice versa. We consider an implication of the obtained results to the study of matrix orthogonal polynomials as well as to the analysis of self-adjointness of scalar Jacobi operators.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.